Search Constraints
Number of results to display per page
Results for:
Search Results
-
Courseware
This course covers the fundamental concepts of structural mechanics with applications to marine, civil, and mechanical structures. Topics include analysis of small deflections of beams, moderately large deflections of beams, columns, cables, and shafts; elastic and plastic buckling of columns, thin walled sections and plates; exact and approximate methods; energy methods; principle of virtual work; introduction to failure analysis of structures. We will include examples from civil, mechanical, offshore, and ship structures such as the collision and grounding of ships.
- Subjects:
- Structural Engineering and Mechanical Engineering
- Keywords:
- Structural analysis (Engineering)
- Resource Type:
- Courseware
-
Courseware
This course is focused on physical understanding of materials processing, and the scaling laws that govern process speed, volume, and material quality. In particular, this course will cover the transport of heat and matter as these topics apply to materials processing.
- Subjects:
- Mechanical Engineering and Materials Science
- Keywords:
- Mass transfer Heat -- Transmission Transport theory Manufacturing processes Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.).
- Subjects:
- Mechanical Engineering
- Keywords:
- Engineering design Machine design
- Resource Type:
- Courseware
-
e-book
A Brief Introduction to Engineering Computation with MATLAB is specifically designed for students with no programming experience. However, students are expected to be proficient in First Year Mathematics and Sciences and access to good reference books are highly recommended. Students are assumed to have a working knowledge of the Mac OS X or Microsoft Windows operating systems. The strategic goal of the course and book is to provide learners with an appreciation for the role computation plays in solving engineering problems. MATLAB specific skills that students are expected to be proficient at are: write scripts to solve engineering problems including interpolation, numerical integration and regression analysis, plot graphs to visualize, analyze and present numerical data, and publish reports.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mechanical Engineering
- Keywords:
- MATLAB Engineering mathematics
- Resource Type:
- e-book
-
Courseware
This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.
- Subjects:
- Mechanical Engineering
- Keywords:
- Mechatronics
- Resource Type:
- Courseware
-
Courseware
This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, efficiency, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions.
- Subjects:
- Mechanical Engineering
- Keywords:
- Internal combustion engines
- Resource Type:
- Courseware
-
Courseware
This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).
- Subjects:
- Mechanical Engineering
- Keywords:
- Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
This is an interdisciplinary, project-based course, centered around a design project in which small teams of students work closely with a person with a disability in the Cambridge area to design a device, piece of equipment, app, or other solution that helps them live more independently.
- Subjects:
- Mechanical Engineering, Electrical Engineering, Rehabilitation Sciences, Computing, and Biomedical Engineering
- Keywords:
- Self-help devices for people with disabilities
- Resource Type:
- Courseware
-
Courseware
The purpose of this course is to introduce you to basics of modeling, design, planning, and control of robot systems. In essence, the material treated in this course is a brief survey of relevant results from geometry, kinematics, statics, dynamics, and control. The course is presented in a standard format of lectures, readings and problem sets.
- Subjects:
- Mechanical Engineering
- Keywords:
- Robotics
- Resource Type:
- Courseware
-
Courseware
The following topics are covered: 1. Turning performance (three dimensional equations of motion, coordinate systems, Euler angles, transformation matrices) 2. Airfield performance (take-off and landing) 3. Unsteady climb and descent (including minimum time to climb problem) 4. Cruise flight and transport performance 5. Equations of motion with a wind gradient present 6. Equations of motion applied to various phases of space flight 7. Launch, Vertical flight, delta-V budget, burn out height, staging 8. Gravity perturbations to satellite orbits, J2 effect for low earth orbit satellites, J2,2 effect for Geostationary Earth Orbit sattelites leading to contribution in ï„V budget 9. Patched conics approach for interplanetary flight, gravity assist effect / options for change of excess velocity (2d, 3d), Launch, in orbit insertion.
- Subjects:
- Aeronautical and Aviation Engineering and Mechanical Engineering
- Keywords:
- Aerodynamics Astrodynamics
- Resource Type:
- Courseware