Search Constraints
Number of results to display per page
Results for:
Search Results
-
e-book
A Brief Introduction to Engineering Computation with MATLAB is specifically designed for students with no programming experience. However, students are expected to be proficient in First Year Mathematics and Sciences and access to good reference books are highly recommended. Students are assumed to have a working knowledge of the Mac OS X or Microsoft Windows operating systems. The strategic goal of the course and book is to provide learners with an appreciation for the role computation plays in solving engineering problems. MATLAB specific skills that students are expected to be proficient at are: write scripts to solve engineering problems including interpolation, numerical integration and regression analysis, plot graphs to visualize, analyze and present numerical data, and publish reports.
- Subjects:
- Mechanical Engineering and Computing
- Keywords:
- MATLAB Engineering mathematics
- Resource Type:
- e-book
-
Courseware
This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.
- Subjects:
- Mechanical Engineering
- Keywords:
- Mechatronics
- Resource Type:
- Courseware
-
Courseware
This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, efficiency, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions.
- Subjects:
- Mechanical Engineering
- Keywords:
- Internal combustion engines
- Resource Type:
- Courseware
-
Courseware
This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).
- Subjects:
- Mechanical Engineering
- Keywords:
- Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
This is an interdisciplinary, project-based course, centered around a design project in which small teams of students work closely with a person with a disability in the Cambridge area to design a device, piece of equipment, app, or other solution that helps them live more independently.
- Subjects:
- Biomedical Engineering, Mechanical Engineering, Rehabilitation Sciences, Computing, and Electrical Engineering
- Keywords:
- Self-help devices for people with disabilities
- Resource Type:
- Courseware
-
Courseware
The purpose of this course is to introduce you to basics of modeling, design, planning, and control of robot systems. In essence, the material treated in this course is a brief survey of relevant results from geometry, kinematics, statics, dynamics, and control. The course is presented in a standard format of lectures, readings and problem sets.
- Subjects:
- Mechanical Engineering
- Keywords:
- Robotics
- Resource Type:
- Courseware
-
Courseware
The following topics are covered: 1. Turning performance (three dimensional equations of motion, coordinate systems, Euler angles, transformation matrices) 2. Airfield performance (take-off and landing) 3. Unsteady climb and descent (including minimum time to climb problem) 4. Cruise flight and transport performance 5. Equations of motion with a wind gradient present 6. Equations of motion applied to various phases of space flight 7. Launch, Vertical flight, delta-V budget, burn out height, staging 8. Gravity perturbations to satellite orbits, J2 effect for low earth orbit satellites, J2,2 effect for Geostationary Earth Orbit sattelites leading to contribution in ï„V budget 9. Patched conics approach for interplanetary flight, gravity assist effect / options for change of excess velocity (2d, 3d), Launch, in orbit insertion.
- Subjects:
- Aeronautical and Aviation Engineering and Mechanical Engineering
- Keywords:
- Aerodynamics Astrodynamics
- Resource Type:
- Courseware
-
Courseware
In this engineering course, you will learn about the engineering principles that play an important role in all of these and more phenomena. You will learn about microbalances, radiation, convection, diffusion and more and their applications in everyday life. This advanced course is for engineers who want to refresh their knowledge, engineering students who are eager to learn more about heat/mass transport and for all who have fun in explaining the science of phenomena in nature.
- Subjects:
- Mechanical Engineering
- Keywords:
- Transport theory Energy transfer Heat -- Transmission Mass transfer
- Resource Type:
- Courseware
-
Courseware
Manufacturing processes can be organized by considering the type of energy required to shape the work-piece. In this course, sources of energy considered for machining are mechanical used for cutting and shaping, heat energy such as in laser cutting, photochemical such as in photolithography, and chemical energy such as in electro chemical machining and chemical vapor deposition (CVD). Students, guided by product specifications and a design will decide: 1) When to apply mechanical machining vs. lithography based machining, 2) What type of mechanical machining and what type of lithography based machining to apply, 3) When to employ bottom-up vs. top-down manufacturing, 4) When to choose serial, batch or continuous manufacturing and 5) What rapid prototyping method to select. A logical decision tree will be presented to sort the machining options. Examples from a variety of products ranging in size from nanometers to centimeters will be considered.
- Subjects:
- Mechanical Engineering
- Keywords:
- Manufacturing processes Machining
- Resource Type:
- Courseware
-
Courseware
This course helps students develop computational programming skills and gain experience with computational tools to be used in the solution of engineering problems. Topics include: Introduction to Computing, Basic Matlab commands, Arrays: one-dimensional and multi-dimensional, Flow control, Selective execution, Repetitive execution and iterations, Input and Output, Modular Programming: Functions, Plotting, and Advanced data types.
- Subjects:
- Aeronautical and Aviation Engineering and Mechanical Engineering
- Keywords:
- Engineering mathematics -- Data processing Engineering -- Data processing Computer programming
- Resource Type:
- Courseware