Search Constraints
Number of results to display per page
Results for:
Creator / Instructor
Hillhouse, Grady
Remove constraint Creator / Instructor: Hillhouse, Grady
Language
English
Remove constraint Language: English
Polyu oer sim
No
Remove constraint Polyu oer sim: No
Resource Type
Video
Remove constraint Resource Type: Video
« Previous |
1 - 20 of 38
|
Next »
Search Results
-
Video
Sometimes conventional reinforcement isn't enough. The basics of prestressed concrete. Prestressing reinforcement doesn't necessarily make concrete stronger. But, it does increase the serviceability of concrete members by reducing the amount of deflection under load. This video explains the two most common types of prestressed concrete: pre-tensioned and post-tensioned. Prestressed concrete is used in all kinds of structures from bridges to buildings to silos and tanks. It’s a great way to minimize cracking and take fuller advantage of the incredible strength of reinforced concrete.
- Subjects:
- Building and Real Estate
- Keywords:
- Prestressed concrete Reinforced concrete
- Resource Type:
- Video
-
Video
This video discusses the purpose and function of elevated water storage tanks. The job of finding enough water, making it safe to use, and then reliably distributing it to the system customers with almost no downtime is a monumental task that requires a lot of infrastructure. And, probably the most visible component of a public water system is the elevated storage tank, also known as a water tower.
- Subjects:
- Building Services Engineering
- Keywords:
- Tanks Water towers Water-supply
- Resource Type:
- Video
-
Video
Expansive soils cause more property damage per year than earthquakes, floods, hurricanes, and tornadoes combined. Expansive soils are a slow-moving geologic phenomenon, which makes them not very news-worthy. However, they still cause a tremendous amount of damage to buildings and the public infrastructure we rely on every day.
- Subjects:
- Building Services Engineering, Land Surveying and Geo-Informatics, and Building and Real Estate
- Keywords:
- Foundations Soil mechanics Swelling soils
- Resource Type:
- Video
-
Video
A few things that can go very wrong when you put steam in a pipe. We talked about the damaging effects of water hammer, but there’s another state of H2O equally if not more dangerous when put in pipes. In this episode, we’re talking about steam hammer and differential shock.
- Subjects:
- Building Services Engineering
- Keywords:
- Piping Fluid dynamics Pipelines
- Resource Type:
- Video
-
Video
Water hammer can work in both directions, and I only discussed one of those in the previous video (https://youtu.be/xoLmVFAFjn4). This episode revisits that demonstration to show how water hammer can form a vacuum pressure in a pipe. Momentum carrying fluid away from a valve wants to keep going even after the valve is closed. This generates a negative pressure than can cause major damage!
- Subjects:
- Building Services Engineering
- Keywords:
- Valves Water hammer Hydraulic control Hydraulic transients Relief valves Fluid mechanics
- Resource Type:
- Video
-
Video
Hydraulic transients (also known as water hammer) can seem innocuous in a residential setting, but these spikes in pressure can cause major damage to large pipelines and industrial pipe networks. In this video, we briefly discuss how water hammer occurs and how engineers mitigate the effect.
- Subjects:
- Building Services Engineering
- Keywords:
- Water hammer Hydraulic transients Fluid mechanics
- Resource Type:
- Video
-
Video
This video explains why ridges move, and other musings on thermal movement of large civil works. Most people have a certain intuition about thermal expansion, but you may not have considered how engineers design to accommodate it on large civil structures. The video gives a quick overview on this important consideration that engineers must account for when designing infrastructure like pipelines, bridges, and even sidewalks.
- Subjects:
- Structural Engineering
- Keywords:
- Structural analysis (Engineering) Expansion (Heat)
- Resource Type:
- Video
-
Video
This video shows the basics of fluid cavitation, including demonstration from AvE. If you subject a fluid to a sudden change in pressure, some interesting things can happen. You can cause tremendous damage to moving parts, or you can harness this destructive power in many beneficial ways.
- Keywords:
- Hydrodynamics Cavitation Fluid mechanics
- Resource Type:
- Video
-
Video
This video shows how simple reinforcement is used to prevent collapse of rock tunnels. Tunnels play an important role in our constructed environment as passageways for mines, conveyance for utilities, and routes for transportation. Rock bolts are a type of reinforcement for stabilizing rock excavations, usually made from steel bars or bolts. This simple construction method dramatically reduces the cost of making tunnels through rock safe from collapse.
- Subjects:
- Structural Engineering
- Keywords:
- Underground construction Rock bolts Tunneling Tunnels
- Resource Type:
- Video
-
Video
Wind can be one of the most critical and complicated loads on civil structures. The case of the Tacoma Narrows bridge is a well-known cautionary tale that’s discussed in engineering and physics classrooms across the world. Both resonance from vortex shedding and aeroelastic flutter contributed to the failure. When you push the envelope, you have to be vigilant because things that didn’t matter before start to become important (e.g. wind loads on lighter structures). Unanticipated challenges are a cost of innovation and that’s something that we can all keep in mind.
- Subjects:
- Structural Engineering
- Keywords:
- Washington (State) -- Tacoma -- Tacoma Narrows Bridge (1940) Suspension bridges Wind-pressure
- Resource Type:
- Video
-
Video
What's the difference between concrete and cement? Concrete is the most important construction material on earth and foundation of our modern society. At first glance it seems rudimentary, but there is a tremendous amount of complexity involved in every part of designing and placing concrete. This video is meant to be a bare-bones introduction to the topic, with a cool demonstration of concrete strength using a hydraulic press.
- Subjects:
- Building and Real Estate
- Keywords:
- Concrete Cement
- Resource Type:
- Video
-
Video
This video shows more destructive testing to answer your questions about concrete. Concrete's greatest weakness is its tensile strength, which can be less than 10% of its compressive strength. So, we often reinforce it to create a composite material strong against all types of stress. This video briefly touches on conventional rebar and prestressed/post-tensioned reinforcement.
- Subjects:
- Building and Real Estate
- Keywords:
- Reinforced concrete Concrete
- Resource Type:
- Video
-
Video
While steel reinforcement solves one of concrete’s greatest limitations, it creates an entirely new problem: Corrosion of embedded steel rebar is the most common form of concrete deterioration. There are lots of ways to combat this problem, a few of which we discuss/demonstrate in this video, including fiber reinforced concrete, adequate protective cover, and fiber reinforced polymer bars.
- Subjects:
- Building and Real Estate
- Keywords:
- Protective coatings Reinforced concrete -- Corrosion -- Prevention Reinforcing bars -- Corrosion Fiber-reinforced concrete
- Resource Type:
- Video
-
Video
This video discusses a few modern techniques that help improve design life of concrete, including roller compacted concrete (RCC) and water reducing admixtures (superplasticizers). There are a whole host of differences between modern concrete and that of the western Roman empire that I didn’t have time to go into, including freeze/thaw damage.
- Subjects:
- Building and Real Estate
- Keywords:
- Concrete construction Roller compacted concrete Concrete -- Additives Concrete
- Resource Type:
- Video
-
Video
Engineers need to be able to predict how water will behave in order to design structures that manage or control it. And fluids don’t always behave the way you’d expect. On this episode, we’re talking about one of the most interesting phenomena in open-channel flow: the hydraulic jump.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydraulics Hydraulic jump
- Resource Type:
- Video
-
Video
A weir is a small dam built across a river to control the upstream water level. Weirs have been used for ages to control the flow of water in streams, rivers, and other water bodies. Unlike large dams which create reservoirs, the goal of building a weir across a river isn’t to create storage, but only to gain some control over the water level. Over time, the term weir has taken on a more general definition in engineering to apply to any hydraulic control structure that allows water to flow over its top, often called its crest. In fact, the spillways of many large dams use weirs as control structures. So how do they work?
- Subjects:
- Hydraulic Engineering
- Keywords:
- Dams Hydraulics Weirs
- Resource Type:
- Video
-
Video
Dams serve a wide variety of purposes from hydropower to flood control to storage of water for municipal and industrials uses. But when a dam’s useful purpose fades away, the structure itself still remains. Dams come in all shapes and sizes, but contrary to what you might think, the most dangerous dams are often the smallest, also known as low head dams.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Dam safety Dams Hydraulics
- Resource Type:
- Video
-
Video
This video gives a quick overview of how we build underwater structures. Oceans, rivers, and lakes are often beautiful, but they’re not necessarily convenient places to build things. Yet, many types of the infrastructure we depend on every day, including wharves, bridges, and dams, are founded below the water. How do they do it? On this episode, we're talking about different types of underwater construction, including cofferdams, diversions, caissons, and drilled shafts. Whether the construction site is on the bottom of a lake or river, or simply located in the floodplain and only at risk during extreme weather, engineers and construction contractors put a significant amount of thought and consideration into the feasibility and costs of managing this water.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Underwater construction Hydraulic engineering
- Resource Type:
- Video
-
Video
Traffic management in dense urban areas is an extremely complex problem with a host of conflicting goals and challenges. One of the most fundamental of those challenges happens at an intersection, where multiple streams of traffic - including vehicles, bikes and pedestrians - need to safely, and with any luck, efficiently, cross each others’ paths. However we accommodate it now or in future, traffic will continue to be one of the biggest challenges in our urban areas and traffic signals will continue to be one of its solutions.
- Subjects:
- Transportation
- Keywords:
- Traffic signs signals Roads -- Interchanges intersections Traffic flow
- Resource Type:
- Video
-
Video
We normally build a dam to hold water back and store it for use in water supply, irrigation, hydropower, or flood control. But sometimes we have to let some water go. Whether we need it downstream or the impounded water behind the dam is simply too full to store any more, nearly every dam needs a spillway to safely discharge water. The spillway is a critical part of any dam and often the most complex component. So how does it work?
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydraulic structures Spillways Dams Reservoirs Diversion structures (Hydraulic engineering)
- Resource Type:
- Video