Search Constraints
Number of results to display per page
Results for:
Creator / Instructor
Hillhouse, Grady
Remove constraint Creator / Instructor: Hillhouse, Grady
Language
English
Remove constraint Language: English
Polyu oer sim
No
Remove constraint Polyu oer sim: No
« Previous |
1 - 20 of 38
|
Next »
Search Results
-
Video
The vast majority of our grid-scale storage of electricity uses this clever method. Electricity faces a fundamental problem that comes with pretty much any product that’s provided on-demand: our ability to generate large amounts of it doesn’t match up that closely with when we need it. The storage of electricity for later use, especially on a large scale, is quite challenging. That’s not to say that we don’t store energy at grid scale though, and there’s one type of storage that makes up the vast majority of our current capacity.
- Subjects:
- Environmental Engineering, Hydraulic Engineering, and Mechanical Engineering
- Keywords:
- Energy storage Water-power Pumped storage power plants
- Resource Type:
- Video
-
Video
Wind can be one of the most critical and complicated loads on civil structures. The case of the Tacoma Narrows bridge is a well-known cautionary tale that’s discussed in engineering and physics classrooms across the world. Both resonance from vortex shedding and aeroelastic flutter contributed to the failure. When you push the envelope, you have to be vigilant because things that didn’t matter before start to become important (e.g. wind loads on lighter structures). Unanticipated challenges are a cost of innovation and that’s something that we can all keep in mind.
- Subjects:
- Structural Engineering
- Keywords:
- Washington (State) -- Tacoma -- Tacoma Narrows Bridge (1940) Suspension bridges Wind-pressure
- Resource Type:
- Video
-
Video
This video shows how simple reinforcement is used to prevent collapse of rock tunnels. Tunnels play an important role in our constructed environment as passageways for mines, conveyance for utilities, and routes for transportation. Rock bolts are a type of reinforcement for stabilizing rock excavations, usually made from steel bars or bolts. This simple construction method dramatically reduces the cost of making tunnels through rock safe from collapse.
- Subjects:
- Structural Engineering
- Keywords:
- Underground construction Rock bolts Tunneling Tunnels
- Resource Type:
- Video
-
Video
This video shows more destructive testing to answer your questions about concrete. Concrete's greatest weakness is its tensile strength, which can be less than 10% of its compressive strength. So, we often reinforce it to create a composite material strong against all types of stress. This video briefly touches on conventional rebar and prestressed/post-tensioned reinforcement.
- Subjects:
- Building and Real Estate
- Keywords:
- Reinforced concrete Concrete
- Resource Type:
- Video
-
Video
This video explains why ridges move, and other musings on thermal movement of large civil works. Most people have a certain intuition about thermal expansion, but you may not have considered how engineers design to accommodate it on large civil structures. The video gives a quick overview on this important consideration that engineers must account for when designing infrastructure like pipelines, bridges, and even sidewalks.
- Subjects:
- Structural Engineering
- Keywords:
- Structural analysis (Engineering) Expansion (Heat)
- Resource Type:
- Video
-
Video
A weir is a small dam built across a river to control the upstream water level. Weirs have been used for ages to control the flow of water in streams, rivers, and other water bodies. Unlike large dams which create reservoirs, the goal of building a weir across a river isn’t to create storage, but only to gain some control over the water level. Over time, the term weir has taken on a more general definition in engineering to apply to any hydraulic control structure that allows water to flow over its top, often called its crest. In fact, the spillways of many large dams use weirs as control structures. So how do they work?
- Subjects:
- Hydraulic Engineering
- Keywords:
- Dams Hydraulics Weirs
- Resource Type:
- Video
-
Video
In many of the world’s tallest skyscrapers, there’s a secret device protecting the building and the people inside from strong motion due to wind and earthquakes. Did you know you can tune a skyscraper just like a guitar? In this video, we’re comparing theory to the real world for tuned mass dampers. Luckily this tech is simple enough that we can model it right in the garage. As silly as this little experiment looks, it’s actually not that far off from what engineers do in the real world (maybe without the googly eyes). The design phase for just about every major building includes some physical scale model tests. This video shows that the tuned mass damper is a great example of elegance in engineering.
- Subjects:
- Structural Engineering
- Keywords:
- Tuned mass dampers Buildings -- Earthquake effects Buildings -- Vibration
- Resource Type:
- Video
-
Video
Engineers need to be able to predict how water will behave in order to design structures that manage or control it. And fluids don’t always behave the way you’d expect. On this episode, we’re talking about one of the most interesting phenomena in open-channel flow: the hydraulic jump.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydraulics Hydraulic jump
- Resource Type:
- Video
-
Video
Hydraulic transients (also known as water hammer) can seem innocuous in a residential setting, but these spikes in pressure can cause major damage to large pipelines and industrial pipe networks. In this video, we briefly discuss how water hammer occurs and how engineers mitigate the effect.
- Subjects:
- Building Services Engineering
- Keywords:
- Water hammer Hydraulic transients Fluid mechanics
- Resource Type:
- Video
-
Video
A few things that can go very wrong when you put steam in a pipe. We talked about the damaging effects of water hammer, but there’s another state of H2O equally if not more dangerous when put in pipes. In this episode, we’re talking about steam hammer and differential shock.
- Subjects:
- Building Services Engineering
- Keywords:
- Piping Fluid dynamics Pipelines
- Resource Type:
- Video
-
Video
Sometimes conventional reinforcement isn't enough. The basics of prestressed concrete. Prestressing reinforcement doesn't necessarily make concrete stronger. But, it does increase the serviceability of concrete members by reducing the amount of deflection under load. This video explains the two most common types of prestressed concrete: pre-tensioned and post-tensioned. Prestressed concrete is used in all kinds of structures from bridges to buildings to silos and tanks. It’s a great way to minimize cracking and take fuller advantage of the incredible strength of reinforced concrete.
- Subjects:
- Building and Real Estate
- Keywords:
- Prestressed concrete Reinforced concrete
- Resource Type:
- Video
-
Video
What's the difference between concrete and cement? Concrete is the most important construction material on earth and foundation of our modern society. At first glance it seems rudimentary, but there is a tremendous amount of complexity involved in every part of designing and placing concrete. This video is meant to be a bare-bones introduction to the topic, with a cool demonstration of concrete strength using a hydraulic press.
- Subjects:
- Building and Real Estate
- Keywords:
- Concrete Cement
- Resource Type:
- Video
-
Video
This video shows the basics of fluid cavitation, including demonstration from AvE. If you subject a fluid to a sudden change in pressure, some interesting things can happen. You can cause tremendous damage to moving parts, or you can harness this destructive power in many beneficial ways.
- Keywords:
- Hydrodynamics Cavitation Fluid mechanics
- Resource Type:
- Video
-
Video
This video shows a demonstration and brief explanation of air lock in fluid pipelines. If you assume that gasses don’t get into pipes or that they can’t constrict the flow, you might design a pipeline that doesn’t work. Luckily for engineers, this is a well-known phenomenon in pipe systems. It’s just one of the complexities that come with the job and we’ve come up a with a lot of creative ways to overcome it.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Fluid dynamics Pipelines
- Resource Type:
- Video
-
Video
In general, and compared to other common building materials, metals have excellent mechanical properties. They are hard, tough, strong, and durable. As someone who occasionally works the wood, even I can admit that metals are a superior material in many regards. So you can see why it would be advantageous to have a way to connect them together, especially if you can do it in such a way that joint isn’t the weakest part of your assembly. That’s the goal of welding, and luckily, this is not something reserved for industrial factories and machine shops. From my own experiences so far, welding is something you might be able to do yourself as a hobby. And stay tuned till the end for some tips for getting started.
-
Video
This video discusses a few modern techniques that help improve design life of concrete, including roller compacted concrete (RCC) and water reducing admixtures (superplasticizers). There are a whole host of differences between modern concrete and that of the western Roman empire that I didn’t have time to go into, including freeze/thaw damage.
- Subjects:
- Building and Real Estate
- Keywords:
- Concrete construction Roller compacted concrete Concrete -- Additives Concrete
- Resource Type:
- Video
-
Video
Dams serve a wide variety of purposes from hydropower to flood control to storage of water for municipal and industrials uses. But when a dam’s useful purpose fades away, the structure itself still remains. Dams come in all shapes and sizes, but contrary to what you might think, the most dangerous dams are often the smallest, also known as low head dams.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Dam safety Dams Hydraulics
- Resource Type:
- Video
-
Video
Almost everyone agrees that flooding is bad. Most years it’s the number one natural disaster in the US by dollars of damage. So being able to characterize flood risks is a crucial job of civil engineers. Engineering hydrology has equal parts statistics and understanding how society treats risks. Water is incredibly important to us, and it shapes almost every facet of our lives, but it’s almost never in the right place at the right time. Sometimes there’s not enough, like in a drought or just an arid region, but we also need to be prepared for the times when there’s too much water, a flood. Rainfall and streamflow have tremendous variability and it’s the engineer’s job to characterize that so that we can make rational and intelligent decisions about how we develop the world around us.
- Subjects:
- Hydraulic Engineering and Disaster Control and Management
- Keywords:
- Floods Hydrology Flood control -- Management
- Resource Type:
- Video
-
Video
Dirt is probably the cheapest and simplest construction material out there, but it's not very strong compared to other choices. Luckily geotechnical engineers have developed a way to strengthen earthen materials with almost no additional effort - Mechanically Stabilized Earth (aka MSE or Reinforced Soil).
- Subjects:
- Building and Real Estate
- Keywords:
- Reinforced soils
- Resource Type:
- Video
-
Video
Water hammer can work in both directions, and I only discussed one of those in the previous video (https://youtu.be/xoLmVFAFjn4). This episode revisits that demonstration to show how water hammer can form a vacuum pressure in a pipe. Momentum carrying fluid away from a valve wants to keep going even after the valve is closed. This generates a negative pressure than can cause major damage!
- Subjects:
- Building Services Engineering
- Keywords:
- Valves Water hammer Hydraulic control Hydraulic transients Relief valves Fluid mechanics
- Resource Type:
- Video