Search Constraints
Number of results to display per page
Results for:
Polyu oer sim
No
Remove constraint Polyu oer sim: No
« Previous |
1 - 100 of 212
|
Next »
Search Results
-
Courseware
The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Underwater acoustics -- Remote sensing Ocean bottom Ocean bottom -- Remote sensing
- Resource Type:
- Courseware
-
Courseware
In this course, you will learn advanced applications of Python for developing and customizing GIS software, designing user interfaces, solving complex geoprocessing tasks, and leveraging open source. The course consists of readings, walkthroughs, projects, quizzes, and discussions about advanced GIS programming concepts and techniques, and a final term project. Software covered in the course includes: Esri ArcGIS Pro/arcpy, Jupyter Notebook, Esri ArcGIS API for Python, QGIS, GDAL/OGR.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Python (Computer program language) Geographic information systems
- Resource Type:
- Courseware
-
Others
Take your SQL skills to the next level.
- Subjects:
- Computing
- Keywords:
- Database management SQL (Computer program language)
- Resource Type:
- Others
-
Courseware
This class is developed around the concept of disobedient interference within the existing models of production of space and knowledge. Modeling is the main modus operandi of the class as students will be required to make critical diagrammatic cuts through processes of production in different thematic registers – from chemistry, law and economy to art, architecture and urbanism – in order to investigate the sense of social responsibility and control over the complex agendas embedded in models that supports production of everyday objects and surroundings. Students will be encouraged to explore relations between material or immaterial aspects and agencies of production, whether they emerged as a consequence of connection of mind, body and space, or the infrastructural, geographical and ecological complexities of the Anthropocene. These production environments will be taken as modeling settings.
- Keywords:
- Space (Architecture) Architecture -- Philosophy
- Resource Type:
- Courseware
-
Video
What is air pollution? Learn how greenhouse gasses, smog, and toxic pollutants effect climate change, and human health.
- Subjects:
- Environmental Sciences and Environmental Engineering
- Keywords:
- Air -- Pollution Greenhouse gases -- Environmental aspects Smog
- Resource Type:
- Video
-
e-book
Architecture in Dialogue with an Activated Ground sets out to validate the role of the unreasonable in the design process. Using case study projects, architect Urs Bette gives an insight into the epistemological processes of his creative practice, and unveils the strategies he deploys in order to facilitate the poetic aspects of architecture within a discourse whose evaluation parameters predominantly involve reason. Themes discussed include the emergence of space from the staged opposition between the architectural object and the site, and the relationship between emotive cognition and analytic synthesis in the design act. In both cases, there is a necessary engagement with forms of ‘unreasonable’ thought, action or behaviours. By arguing for the usefulness and validity of the unreasonable in architecture, and by investigating the performative relationship between object and ground, Bette contributes to the discourse on extensions, growth and urban densification that tap into local histories and voices, including those of the seemingly inanimate – the architecture itself and the ground it sits upon – to inform the site-related production of architectural character and space. In doing so, he raises debates about the values pursued in design approval processes, and the ways in which site-relatedness is both produced and judged.
- Subjects:
- Building and Real Estate
- Keywords:
- Architectural design Architectural practice
- Resource Type:
- e-book
-
Video
The ultimate Arduino tutorial for beginners. Learn how to choose an Arduino, dim LEDs, build a motor speed controller and more.
- Keywords:
- Programmable controllers Arduino (Programmable controller)
- Resource Type:
- Video
-
Others
Arduino is the world’s leading open-source hardware and software ecosystem. The Company offers a range of software tools, hardware platforms and documentation enabling almost anybody to be creative with technology. Arduino is a popular tool for IoT product development as well as one of the most successful tools for STEM/STEAM education. Hundreds of thousands of designers, engineers, students, developers and makers around the world are using Arduino to innovate in music, games, toys, smart homes, farming, autonomous vehicles, and more.
- Keywords:
- Programmable controllers Arduino (Programmable controller)
- Resource Type:
- Others
-
Video
Some people say that buying an electric car is a great way to fight climate change - but if they use electricity that is made by burning fossil fuels, are they really more environmentally friendly than gas powered cars?
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Electric vehicles -- Environmental aspects Automobiles -- Environmental aspects
- Resource Type:
- Video
-
Video
Can renewable energy be adopted to aviation transportation industry? Can our giant planes powered by batteries? This video discusses some possibilities.
- Subjects:
- Environmental Engineering, Aeronautical and Aviation Engineering, and Transportation
- Keywords:
- Renewable energy sources Energy storage Airplanes -- Fuel
- Resource Type:
- Video
-
Courseware
We will explore images that pertain to the emergence of Japan as a modern state. We will focus on images that depict Japan as it comes into contact with the rest of the world after its long and deep isolation during the feudal period. We will also cover city planning of Tokyo that took place after WWII, and such topics as the 1964 Tokyo Olympics. A unique feature of this offering is that we will run it concurrently with the edX MOOC and two University of Tokyo MOOCs, Visualizing Postwar Tokyo and Four Faces of Contemporary Japanese Architecture, for much of the remainder of the class.
- Subjects:
- Area Studies, Visual Arts, and Building and Real Estate
- Keywords:
- Arts Japan
- Resource Type:
- Courseware
-
Video
This is a demo of a bell siphon I built in collaboration with a couple of engineering professors. There are certain cases where it would be nice to be able to create a siphon without any intervention, a self-priming or automatic siphon: the next level of siphonry. It's built out of an acrylic sheet and a piece of clear pipe.
- Subjects:
- Building Services Engineering
- Keywords:
- Siphons
- Resource Type:
- Video
-
Courseware
This course provides students with a basic knowledge of structural analysis and design for buildings, bridges and other structures. The course emphasizes the historical development of structural form and the evolution of structural design knowledge, from Gothic cathedrals to long span suspension bridges. Students will investigate the behavior of structural systems and elements through design exercises, case studies, and load testing of models. Students will design structures using timber, masonry, steel, and concrete and will gain an appreciation of the importance of structural design today, with an emphasis on environmental impact of large scale construction.
- Subjects:
- Structural Engineering
- Keywords:
- Structural design Structural analysis (Engineering)
- Resource Type:
- Courseware
-
Courseware
Design of shoreline protection along rivers, canals and the sea; load on bed and shoreline by currents, wind waves and ship motion; stability of elements under current and wave conditions; stability of shore protection elements; design methods, construction methods. Flow: recapitulation of basics from fluid mechanics (flow, turbulence), stability of individual grains (sand, but also rock) in different type of flow conditions (weirs, jets), scour and erosion. Porous Media: basic equation, pressures and velocities on the stability on the boundary layer; groundwater flow with impermeable and semi-impermeable structures; granular filters and geotextiles. Waves: recapitulation of the basics of waves, focus on wave forces on the land-water boundary, specific aspects of ship induced waves, stability of elements under wave action (loose rock, placed blocks, impermeable layers) Design: overview of the various types of protections, construction and maintenance; design requirements, deterministic and probabilistic design; case studies, examples Materials and environment: overview of materials to be used, teraction with the aquatic environment, role of the land-water boundary as part of the ecosystem; environmentally sound shoreline design.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Shore protection Coast defenses
- Resource Type:
- Courseware
-
Video
With so many new users picking up virtual reality headsets for the 2019 holiday season, it's time for a 2020 beginners guide to virtual reality. Let's dive into PC Specs, recommended headsets, setup, comfort, locomotion, motion sickness, free games and a lot more.
- Subjects:
- Interactive and Digital Media and Computing
- Keywords:
- Computer simulation Virtual reality Human-computer interaction
- Resource Type:
- Video
-
MOOC
In the past few decades, China's cities have experienced a period of rapid development. Great changes have taken place in both urban space and urban life. With the booming of information and communications technology (ICT), ‘Big data’ such as mobile phone signaling, public transportation smart card records and ‘open data’ from commercial websites and government websites jointly promote the formation of the ‘new data environment’, thus providing a novel perspective for a better understanding of what changes have happened or are happening in China’s cities. This course combines both the new data generated for urban analysis and its research applications. The content ranges from big data acquisition, analysis, visualization and applications in the context of China’s urbanization and its city planning, to urban modeling methods and typical models, as well as the emerging trend and potential revolution of big data in urban planning. We have categorized the overall content of this online course into five sections, namely, overview, data, data processing, application, and perspective. The section of overview introduces cities in transition and describe the changing of urban space and urban life in China. The second section lists some commonly used open data and big data in the ‘new data environment’. Then, methods for data acquisition, cleaning and analysis are illustrated in data processing section. To better explain the data analysis method, the fourth part introduces several Chinese research cases to illustrate the application of these methods in urban research. Last but not least, the last section is the most future-oriented one, which is composed of some methodologies and proposals such as Data Augmented Design (DAD) and Big Model. This course, which shares experiences on big data analysis and its research application, will suit those concerning contemporary urbanizing China and its urban planning in the context of information and communication technologies.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- China Cities towns -- Data processing City planning Big data
- Resource Type:
- MOOC
-
Video
Biofuels can provide energy without the reliance on environmentally harmful fossils fuels -- but scientists are still searching for a plentiful source. Craig A. Kohn demonstrates how cellulose, the naturally abundant tough walls of plant cells, might be the solution.
- Subjects:
- Mechanical Engineering, Environmental Engineering, and Chemical and Bioprocess Technology
- Keywords:
- Renewable energy sources Biomass conversion Cellulose -- Biodegradation Biomass energy
- Resource Type:
- Video
-
Video
A tutorial on setting up clothing to low poly character.
- Subjects:
- Interactive and Digital Media and Computing
- Keywords:
- Blender (Computer file) Three-dimensional display systems Computer animation Computer graphics
- Resource Type:
- Video
-
Video
Engineers that work with fluids need a solid understanding of how they behave, and there’s one branch of fluid mechanics that plays a role in areas all across our lives. Whether you’re designing a water tower for a city or you just want to understand how those upside-down pet bowls work, you’ve got to know how to relate the depth and pressure of a fluid: hydrostatics.
- Keywords:
- Hydrostatics Fluid mechanics
- Resource Type:
- Video
-
Courseware
Design and construction of breakwaters and closure dams in estuaries and rivers. Functional requirements, determination of boundary conditions, spatial and constructional design and construction aspects of breakwaters and dams consisting of rock, sand and caissons. Overview and history of breakwater and closure dam construction. The general design principles of a breakwater and a closure dam. Determination of boundary conditions for dams and breakwaters, with special attention to the design frequency. Methods to determine the design wave height from wave statistics. Overview of other boundary conditions (geotechnical and hydraulic). Materials, quarries and rock properties. Various properties of the different types of dams and breakwaters, like stability of riprap in current and wave conditions, design of armour layer, natural rock and concrete elements. The use of caissons for breakwaters and closure dams. Computation of element size using classical formulae, partial safety coefficients and probabilistic methods. Plan and cross section of breakwaters. Practical examples of breakwaters and closure dams. Execution (marine or land based equipment) of the works. Failure mechanisms and (cost) optimisation. One-week exercise in which a group of two or three students has to design a breakwater and a closure dam.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Tidal basins Breakwaters -- Design construction River channels Dams -- Design construction
- Resource Type:
- Courseware
-
Video
This video explores the behavior and design of structural steel elements according to AISC 360. Design of tension members, bolted and welded connections, columns, beams, and beam-columns based on strength and serviceability requirements.
- Subjects:
- Structural Engineering
- Keywords:
- Building Iron steel Steel Structural
- Resource Type:
- Video
-
Courseware
Maps are powerful visual tools, both for communicating ideas and for facilitating data exploration. In this course, you will learn design principles and techniques for creating maps with contemporary mapping tools, including ArcGIS Pro. In this lab-focused course, you'll apply cartographic theory to practical problems, with a focus on design decisions such as selecting visual variables, classifying and generalizing data, applying principles of color and contrast, and choosing projections for maps.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Geographic information systems Cartography ArcGIS
- Resource Type:
- Courseware
-
MOOC
Building construction is one of the most waste producing sectors. In the European Union, construction alone accounts for approximately 30% of the raw material input. In addition, the different life-cycle stages of buildings, from construction to end-of-life, cause a significant environmental impact related to energy consumption, waste generation and direct and indirect greenhouse gas emissions. The Circular Economy model offers guidelines and principles for promoting more sustainable building construction and reducing the impact on our environment. If you are interested in taking your first steps in transitioning to a more sustainable manner of construction, then this course is for you! In this course you will become familiar with circularity as a systemic, multi-disciplinary approach, concerned with the different scale, from material to product, building, city, and region. Some aspects of circularity that will be included in this course are maximizing reuse and recycle levels by closing the material loops. You will also learn how the Circular Economy can help to realign business incentives in supply chains, and how consumers can be engaged and contribute to the transition through new business models enabling circular design, reuse, repair, remanufacturing and recycling of building components. In addition, you will learn how architecture and urban design can be adapted according to the principles of the Circular Economy and ensure that construction is more sustainable. You will also learn from case studies how companies already profitably incorporate this new theory into the design, construction and operation of the built environment.
- Subjects:
- Building and Real Estate
- Keywords:
- Construction industry -- Environmental aspects Building materials -- Recycling Sustainable construction
- Resource Type:
- MOOC
-
e-book
Cities Made of Boundaries presents the theoretical foundation and concepts for a new social scientific urban morphological mapping method, Boundary Line Type (BLT) Mapping. Its vantage is a plea to establish a frame of reference for radically comparative urban studies positioned between geography and archaeology. Based in multidisciplinary social and spatial theory, a critical realist understanding of the boundaries that compose built space is operationalised by a mapping practice utilising Geographical Information Systems (GIS). Benjamin N. Vis gives a precise account of how BLT Mapping can be applied to detailed historical, reconstructed, contemporary, and archaeological urban plans, exemplified by sixteenth- to twenty-first century Winchester (UK) and Classic Maya Chunchucmil (Mexico). This account demonstrates how the functional and experiential difference between compact western and tropical dispersed cities can be explored. The methodological development of Cities Made of Boundaries will appeal to readers interested in the comparative social analysis of built environments, and those seeking to expand the evidence-base of design options to structure urban life and development.
- Subjects:
- Building and Real Estate
- Keywords:
- Urban geography Sociology Urban City planning -- Methodology
- Resource Type:
- e-book
-
Courseware
Around the world, major challenges of our time such as population growth and climate change are being addressed in cities. Here, citizens play an important role amidst governments, companies, NGOs and researchers in creating social, technological and political innovations for achieving sustainability. Citizens can be co-creators of sustainable cities when they engage in city politics or in the design of the urban environment and its technologies and infrastructure. In addition, citizens influence and are influenced by the technologies and systems that they use every day. Sustainability is thus a result of the interplay between technology, policy and people’s daily lives. Understanding this interplay is essential for creating sustainable cities. In this MOOC, we zoom in on Amsterdam, Beijing, Ho Chi Minh City, Nairobi, Kampala and Suzhou as living labs for exploring the dynamics of co-creation for sustainable cities worldwide. We will address topics such as participative democracy and legitimacy, ICTs and big data, infrastructure and technology, and SMART technologies in daily life. This global scope will be used to illustrate why specific forms of co-creation are preferred in specific urban contexts. Moreover, we will investigate and compare these cities on three themes that have a vast effect on city life: - Water and waste - Energy, air, food and mobility - Green spaces and food This MOOC will teach you about the dynamics of co-creation and the key principles of citizens interacting with service providing companies, technology and infrastructure developers, policy makers and researchers. You will gain an understanding of major types of co-creation and their interdependency with their socio-technical and political contexts. You will become equipped to indicate how you can use co-creation to develop innovative technologies, policy arrangements or social practices for a sustainable city in your own community. You will demonstrate this by developing an action plan, research proposal or project idea. Basic knowledge of sustainability in urban settings, urban environmental technology and urban management is assumed.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Sustainable development Sustainable development -- Citizen participation City planning
- Resource Type:
- Courseware
-
Courseware
Based on working on exercises on project decision making and planning, the specific context of working abroad in general and in developing countries in particular is illustrated, with regard to socio-cultural aspects, planning and financing of projects, roles of (consulting) engineers and contractors, local materials, techniques and knowledge and environmental issues.
- Keywords:
- Public works Developing countries Civil engineering
- Resource Type:
- Courseware
-
Video
This video gives a brief overview of this ingenious method of compressing air using only the power of water. The way a trompe harnesses the power of water to generate compressed air with no moving parts is fascinating and its use is seeing a small revival in modern days. A trompe can be useful in off-grid aquaponics and hydroponic systems that need aeration of the water. And, in fact, the inspiration for this video came from the late Bruce Leavitt, a mining engineer who pioneered the use of small trompes for aeration and treatment of mining water in remote locations without access to electricity.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Air-compressors Compressed air Water-power Fluid dynamics
- Resource Type:
- Video
-
Others
CSI produces five primary software packages: SAP2000, CSiBridge, ETABS, SAFE, and PERFORM-3D.
Each of these programs offers unique capabilities and tools that are tailored to different types of structures and problems, allowing users to find just the right solution for their work. SAP2000 is intended for use on civil structures such as dams, communication towers, stadiums, industrial plants and buildings. CSiBridge offers powerful parametric design of concrete and steel bridges. ETABS has been developed specifically for multi-story commercial and residential building structures, such as office towers, apartments and hospitals. The SAFE System provides an efficient and powerful program for the analysis and design of concrete slabs and foundations, with or without post-tensioning. PERFORM-3D is a highly focused nonlinear tool offering powerful performance based design capabilities.
With its uniquely qualified staff of professional structural engineers, researchers, academicians, and its worldwide involvement in the structural engineering community, CSI has been at the forefront of structural software development for nearly four decades. With CSI products you can be confident that you have the finest structural engineering software available, backed by a company with an unmatched record of innovation, and an unrivaled commitment to meet the ever-evolving needs of the profession.
- Course related:
- CSE48405 Design Project For Structural and Fire Engineers
- Keywords:
- Structural design Architectural design Building -- Data processing Computer-aided design
- Resource Type:
- Others
-
MOOC
This course provides the tools needed to build a low-carbon power sector around the world. By diving into the perspective of different players in the power sector - from investors through to utilities, regulators and project developers - you will be able to choose the right strategies, policies and other levers needed to incentivise a cleaner power mix in your own context. This course explores the mix of approaches that can create a pro-renewables environment. It explores this from a policy, regulatory and supply-chain perspective and examines the incentives and rules available. Key policies are brought to life through case studies, learning from both success and failure. Key messages of the course include: - Ambitions for renewable electricity must be grounded in technical and financial feasibility - Pro-renewables environments recognise the needs of energy supply chain actors (e.g. project developers, utilities, regulators, electricity customers) and balances pricing, fiscal and financial and wider policies to incentivise and drive deployment - There are multiple ways to encourage deployment of renewables across different scales – these have strengths and weaknesses and must balance rate of deployment, affordability and efficiency of generation - Incentives and rules are a package and can be aligned to deliver affordable, efficient renewable electricity - several real-world examples demonstrate this - Different countries have succeeded and failed in creating pro-renewables environments – demonstrating that while lessons can be used from these experiences, there is no single route to success and the environment must be bespoke to the circumstances of the country. This course should help decision makers across the electricity supply chain, in both the public and private sector, understand what mix of incentives is ideal from their perspective.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Environmental Policy and Planning
- Keywords:
- Electric power distribution -- Environmental aspects Renewable energy sources
- Resource Type:
- MOOC
-
MOOC
The building industry is exploding with data sources that impact the energy performance of the built environment and health and well-being of occupants. Spreadsheets just don’t cut it anymore as the sole analytics tool for professionals in this field. Participating in mainstream data science courses might provide skills such as programming and statistics, however the applied context to buildings is missing, which is the most important part for beginners. This course focuses on the development of data science skills for professionals specifically in the built environment sector. It targets architects, engineers, construction and facilities managers with little or no previous programming experience. An introduction to data science skills is given in the context of the building life cycle phases. Participants will use large, open data sets from the design, construction, and operations of buildings to learn and practice data science techniques. Essentially this course is designed to add new tools and skills to supplement spreadsheets. Major technical topics include data loading, processing, visualization, and basic machine learning using the Python programming language, the Pandas data analytics and sci-kit learn machine learning libraries, and the web-based Colaboratory environment. In addition, the course will provide numerous learning paths for various built environment-related tasks to facilitate further growth.
- Keywords:
- City planning -- Statistical methods Python (Computer program language) Information visualization
- Resource Type:
- MOOC
-
Others
Make great data visualizations. A great way to see the power of coding!
- Subjects:
- Computing
- Keywords:
- Information visualization Python (Computer program language)
- Resource Type:
- Others
-
MOOC
In autonomous vehicles such as self-driving cars, we find a number of interesting and challenging decision-making problems. Starting from the autonomous driving of a single vehicle, to the coordination among multiple vehicles. This course will teach you the fundamental mathematical model for many of these real-world problems. Key topics include Markov decision process, reinforcement learning and event-based methods as well as the modelling and solving of decision-making for autonomous systems. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge in decision-making models for autonomous systems. Enhance your decision-making skills in automotive engineering by learning from Chalmers, one of the top engineering schools that distinguished through its close collaboration with industry.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Decision making Automobiles -- Design construction Automated vehicles
- Resource Type:
- MOOC
-
Others
Geospatial artificial intelligence sometimes referred to as geoAI is recently receiving so much attention. From large-scale projects to smaller projects. GeoAI can be referred to as using artificial intelligence with Geographical information system to analyse and produce solution-based predictions.
- Subjects:
- Computing and Land Surveying and Geo-Informatics
- Keywords:
- Geospatial data Geographic information systems Artificial intelligence
- Resource Type:
- Others
-
e-book
Design Transactions presents the outcome of new research to emerge from ‘Innochain’, a consortium of six leading European architectural and engineering-focused institutions and their industry partners. The book presents new advances in digital design tooling that challenge established building cultures and systems. It offers new sustainable and materially smart design solutions with a strong focus on changing the way the industry thinks, designs, and builds our physical environment. Divided into sections exploring communication, simulation and materialisation, Design Transactions explores digital and physical prototyping and testing that challenges the traditional linear construction methods of incremental refinement. This novel research investigates ‘the digital chain’ between phases as an opportunity for extended interdisciplinary design collaboration. The highly illustrated book features work from 15 early-stage researchers alongside chapters from world-leading industry collaborators and academics.
- Subjects:
- Product Design and Building and Real Estate
- Keywords:
- Architecture -- Computer-aided design Architectural design
- Resource Type:
- e-book
-
Video
This video discusses the technical aspects to consider when designing an airport runway.
- Subjects:
- Aeronautical and Aviation Engineering and Transportation
- Keywords:
- Airports Runways (Aeronautics) -- Design construction Aeronautics Commercial
- Resource Type:
- Video
-
e-book
DOAB provides a searchable index to the information about these books, with links to the full texts of the publications at the publisher’s website or repository.
- Subjects:
- Environmental Sciences
- Keywords:
- Geography Climatology Ecology Meteorology Earth sciences Oceanography Environmental sciences Geology
- Resource Type:
- e-book
-
Video
While steel reinforcement solves one of concrete’s greatest limitations, it creates an entirely new problem: Corrosion of embedded steel rebar is the most common form of concrete deterioration. There are lots of ways to combat this problem, a few of which we discuss/demonstrate in this video, including fiber reinforced concrete, adequate protective cover, and fiber reinforced polymer bars.
- Subjects:
- Building and Real Estate
- Keywords:
- Protective coatings Reinforced concrete -- Corrosion -- Prevention Reinforcing bars -- Corrosion Fiber-reinforced concrete
- Resource Type:
- Video
-
Courseware
The course gives the technological backgrounds of treatment processes applied for production of drinking water. The treatment processes are demonstrated with laboratory experiments. Study goals: Knowledge of technological basics and design parameters of drinking water treatment processes.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Drinking water -- Purification
- Resource Type:
- Courseware
-
Courseware
This course deals with the design of drinking water treatment plants. Theory is discussed and a design exercise is made. Study goals: Understanding of design aspects and design details.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Water treatment plants -- Design construction Drinking water -- Purification
- Resource Type:
- Courseware
-
Courseware
We will discuss sciences and societal consequences of air pollution problems such as 1. Photochemical smog 2. Atmospheric particle pollution 3. Indoor pollution 4. Acid rain 5. And human triggered climate change.Essential concepts of chemistry, physics, meteorology and mathematics will be introduced. The consequences of air pollution will be discussed in historical and international perspectives. The main educational goal is raising critical thinking skills for the students to develop their own opinions future environmental issues
- Subjects:
- Environmental Engineering
- Keywords:
- Air -- Pollution
- Resource Type:
- Courseware
-
MOOC
Too often modern cities and suburbs are disorganized places where most new development makes daily life less pleasant, creates more traffic congestion, and contributes to climate change. This trend has to change; and our course is going to show you how. Ecodesign means integrating planning, urban design and the conservation of natural systems to produce a sustainable built and natural environment. Ecodesign can be implemented through normal business practices and the kinds of capital programs and regulations already in use in most communities. We will show you how ecodesign has already been used for exceptional projects in many cities and suburbs—from Hammarby Sjöstad in Stockholm to False Creek North in Vancouver to Battery Park City in Manhattan, as well as many smaller-scale examples that can be adopted in any community. Cities and suburbs built according to ecodesign principles can and should become normal, instead of just a few special examples, transforming urban development into desirable, lower-carbon, compact and walkable communities and business centers. As this course describes specific solutions to the vexing urban challenges we all face, course participants can see how these ideas might be applied in their own area. Participants will learn the conceptual framework of ecodesign, see many real, successful examples, and come to understand the tools, processes, and techniques for policy development and implementation. Ecodesign thinking is relevant to anyone who has a part in shaping or influencing the future of cities and suburbs – citizens, students, designers, public officials, and politicians. At the conclusion of the course participants will have the tools and strategies necessary to advocate policies and projects for a neighbourhood or urban district using the ecodesign framework.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Cities towns -- Growth City planning -- Environmental aspects Regional planning
- Resource Type:
- MOOC
-
Courseware
This course teaches the principles and analysis of electromechanical systems. Students will develop analytical techniques for predicting device and system interaction characteristics as well as learn to design major classes of electric machines. Problems used in the course are intended to strengthen understanding of the phenomena and interactions in electromechanics, and include examples from current research.
- Subjects:
- Building Services Engineering and Electrical Engineering
- Keywords:
- Electric machines Electric machinery
- Resource Type:
- Courseware
-
MOOC
Electric powertrains are estimated to propel a large part of road vehicles in the future, due to their high efficiency and zero tailpipe emissions. But, the cost and weight of batteries and the time to charge them are arguments for the conventional powertrain in many vehicles. This makes it important for engineers working with vehicles to understand how both these powertrains work, and how to determine their performance and energy consumption for different type of vehicles and different ways of driving vehicles. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about electric powertrains. In this course, you will learn how electric and conventional combustion engine powertrains are built and how they work. You will learn methods to calculate their performance and energy consumption and how to simulate them in different driving cycles. You will also learn about the basic function, the main limits and the losses of: Combustion engines, Transmissions Electric machines, Power electronics Batteries. This knowledge will also be a base for understanding and analysing different types of hybrid vehicles, discussed in the course, Hybrid Vehicles. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Automobiles -- Power trains
- Resource Type:
- MOOC
-
MOOC
Humanity faces an immense challenge: providing abundant energy to everyone without wrecking the planet. If we want a high-energy future while protecting the natural world for our children, we must consider the environmental consequences of energy production and use. But money matters too: energy solutions that ignore economic costs are not realistic, particularly in a world where billions of people currently can’t afford access to basic energy services. How can we proceed? Energy Within Environmental Constraints won’t give you the answer. Instead, we will teach you how to ask the right questions and estimate the consequences of different choices. This course is rich in details of real devices and light on theory. You won’t find any electrodynamics here, but you will find enough about modern commercial solar panels to estimate if they would be profitable to install in a given location. We emphasizes costs: the cascade of capital and operating costs from energy extraction all the way through end uses. We also emphasize quantitative comparisons and tradeoffs: how much more expensive is electricity from solar panels than from coal plants, and how much pollution does it prevent? Is solar power as cost-effective an environmental investment as nuclear power or energy efficiency? And how do we include considerations other than cost? This course is intended for a diverse audience. Whether you are a student, an activist, a policymaker, a business owner, or a concerned citizen, this course will help you start to think carefully about our current energy system and how we can improve its environmental performance.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Environmental protection Environmental management Renewable energy sources Power resources
- Resource Type:
- MOOC
-
Courseware
Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products. The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course. Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R. This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.
- Subjects:
- Environmental Engineering
- Keywords:
- Engineering design Industrial management -- Environmental aspects Sustainable design Remanufacturing
- Resource Type:
- Courseware
-
Video
Engineering Mathematics tutorial series covers aspects of applied mathematics including: multivariable calculus; vector field theory; differential equations; Laplace transforms and Fourier series.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Engineering mathematics
- Resource Type:
- Video
-
Courseware
If you’re interested in the concept of building with nature, then this is the engineering course for you. This course explores the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructural designs. You will learn the Building with Nature ecosystem-based design concept and its applications in water and coastal systems. During the course, you will be presented with a range of case studies to deepen your knowledge of ecological and engineering principles. You’ll learn from leading Dutch engineers and environmental scientists who see the Building with Nature integrated design approach as fundamental to a new generation of engineers and ecologists. Join us in exploring the interface between hydraulic engineering, nature and society.
- Subjects:
- Building Services Engineering and Hydraulic Engineering
- Keywords:
- Sustainable development Hydraulic engineering Water resources development -- Environmental aspects
- Resource Type:
- Courseware
-
Courseware
This course focuses on the thermal, luminous, and acoustic behavior of buildings, examining the basic scientific principles underlying these phenomena and introducing students to technologies and analysis techniques for designing comfortable indoor environments. Students are challenged to apply these techniques and explore the role light, energy, and sound can play in shaping architecture.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Buildings -- Environmental engineering Sustainable buildings -- Design construction
- Resource Type:
- Courseware
-
Courseware
This course focuses on the use of remotely sensed imagery and elevation data in GIS applications. Students enrolling in this course should have a solid conceptual foundation in geospatial information science and technology. The course is appropriate for those who are already working in the geospatial profession and wish to use imagery and elevation data in visualization and spatial analysis.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Geographic information systems Image processing -- Digital techniques
- Resource Type:
- Courseware
-
e-book
Fabricate 2020 is the fourth title in the FABRICATE series on the theme of digital fabrication and published in conjunction with a triennial conference (London, April 2020). The book features cutting-edge built projects and work-in-progress from both academia and practice. It brings together pioneers in design and making from across the fields of architecture, construction, engineering, manufacturing, materials technology and computation. Fabricate 2020 includes 32 illustrated articles punctuated by four conversations between world-leading experts from design to engineering, discussing themes such as drawing-to-production, behavioural composites, robotic assembly, and digital craft.
- Subjects:
- Building and Real Estate
- Keywords:
- Architecture -- Computer-aided design Architecture -- Data processing Architecture Modern
- Resource Type:
- e-book
-
Others
Discover the most effective way to improve your models.
- Subjects:
- Computing
- Keywords:
- Machine learning Data mining Python (Computer program language)
- Resource Type:
- Others
-
Courseware
The course “Fluid Flow, Heat and Mass Transfer,” course number ta3220, is third-year BSc course in the program of Applied Earth Sciences at Delft University of Technology. Students in this class have already taken a course in “Transport Phenomena” in the second year, and “Fluid Flow Heat and Mass Transfer” is designed as a follow-up to that class, with an emphasis on topics of importance in applied earth sciences, and in particular to Petroleum Engineering, groundwater flow and mining. In practice, however I start over again with first principles with this class, because the initial concepts of the shell balance are difficult for students to grasp and can always use a second time through. The course covers simple fluid mechanics problems (rectilinear flow) using shell balances, for Newtonian and power-law fluids and Bingham plastics. Turbulence for Newtonian fluids is covered in the context of friction factors for flow in pipes, flow around spheres and flow in packed beds. In heat transfer we start again with shell balances for solving simple steady-state conduction problems. Thereafter, special attention is given to unsteady and multidimensional heat conduction, since the equations are similar for unsteady flow in aquifers and petroleum reservoirs. The concepts of orthogonal conduction and superposition are emphasized, as well as ways to treat perfectly insulated boundaries. The final topic in heat transfer is estimation of heat-transfer coefficients in flow in tubes. Although no other geometries are treated explicitly, I hope students recognize certain principles they can apply to other situations. We cover mass transfer only lightly, and only as by analogy to heat conduction: unsteady diffusion (by analogy to unsteady head conduction) and mass transfer in tubes (by analogy to heat transfer in tubes).
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Heat -- Transmission Mass transfer Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
What do collapsed buildings, infected hospital patients, and crashed airplanes have in common? If you know the causes of these events and conditions, they can all be prevented. In this course, you will learn how to use the TU Delft mind-set to investigate the causes of such events so you can prevent them in the future. When, for instance, hundreds of hospital patients worldwide got infected after having gall bladder treatments, forensic engineering helped reveal how the design and use of the medical instruments could cause such widespread infections. As a result, changes were made to the instrument design and the procedural protocols in hospitals. Learning from failure in this case benefitted patient health and safety across the world. After taking this course you will have an understanding of failures and the investigation processes used to find their causes. You will learn how to apply lessons gained from investigating previous failures into new designs and procedures.
- Keywords:
- Forensic engineering Failure analysis (Engineering)
- Resource Type:
- Courseware
-
Courseware
Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Photovoltaic cells Photovoltaic power systems Photovoltaic power generation
- Resource Type:
- Courseware
-
MOOC
Understanding a city as a whole, its people, components, functions, scales and dynamics, is crucial for the appropriate design and management of the urban system. While the development of cities in different parts of the world is moving in diverse directions, all estimations show that cities worldwide will change and grow strongly in the coming years. Especially in the tropics over the next 3 decades, it is expected that the number of new urban residents will increase by 3 times the population of Europe today. Yet already now, there is an extreme shortage of designers and urban planners able to understand the functioning of a city as a system, and to plan a sustainable and resilient city. To answer questions like: Which methods can contribute to the sustainable performance of a city, and how can we teach this to the next generations, the ETH Future Cities Laboratory in Singapore has produced over the last 3 years many necessary research results. “Future Cities” aims to bring these latest results to the places where they are needed most. The only way to better understand the city is by going beyond the physical appearance and by focusing on different representations, properties and impact factors of the urban system. For that reason, in this course we will explore the city as the most complex human-made “organism” with a metabolism that can be modeled in terms of stocks and flows. We will open a holistic view on existing and new cities, with a focus on Asia. Data-driven approaches for the development of the future city will be studied, based on crowdsourcing and sensing. At first, we will give an overview of the components and dynamics of the future cities, and we will show the importance of information and information architecture for the cities of the future. The course will cover the origins, state-of-the-art and applications of information architecture and simulation. “Future Cities” will provide the basis to understand, shape, plan, design, build, manage and continually adapt a city. You will learn to see the consequences of citizen science and the merging of Architecture and information space. You will be up-to-date on the latest research and development on how to better understand, create and manage the future cities for a more resilient urban world.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Smart cities Cities towns -- Effect of technological innovations on City planning
- Resource Type:
- MOOC
-
Courseware
Geo-information has proven to be extremely helpful in many aspects of risk and disaster management: locational and situational awareness, monitoring of hazards, damage detection, sharing of information, defining vulnerability areas, etc. This course aims to provide knowledge on risk and disaster management activities, demonstrate use of geo-information technologies in emergency response, outline current challenges and motivate young geo-specialist to seek for advanced solutions.
-
Courseware
In this data rich world, we need to understand how things are organized on the Earth's surface. Those things are represented by spatial data and necessarily depend upon what surrounds them. Spatial statistics provide insights into explaining processes that create patterns in spatial data. In geographical information analysis, spatial statistics such as point pattern analysis, spatial autocorrelation, and spatial interpolation will analyze the spatial patterns, spatial processes, and spatial association that characterize spatial data. Understanding spatial analysis will help you realize what makes spatial data special and why spatial analysis reveals a truth about spatial data.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Spatial analysis (Statistics) Geographic information systems
- Resource Type:
- Courseware
-
Courseware
The Geology 1 course is composed of three parts dedicated to 1. general knowledge of the system Earth, 2. tools for the 3D geometric representation of geological objects and 3. methods and techniques for the recognition of fundamental minerals and rocks.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Rock mechanics Minerals Earth sciences Geology
- Resource Type:
- Courseware
-
Courseware
Are you fascinated by Geosciences and willing to take the challenge of predicting the nature and behavior of the Earth subsurface? This is your course! In a voyage through the Earth, Geoscience: the Earth and its Resources will explore the Earth interior and the processes forming mountains and sedimentary basins. You will understand how the sediments are formed, transported, deposited and deformed. You will develop knowledge on the behavior of petroleum and water resources. The course has an innovative approach focusing on key fundamental processes, exploring their nature and quantitative interactions. It will be shown how this acquired knowledge is used to predict the nature and behavior of the Earth subsurface. This is your ideal first step as a future Geoscientists or professional to upgrade your knowledge in the domain of Earth Sciences.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Plate tectonics Earth sciences Petroleum -- Geology Geology Hydrology
- Resource Type:
- Courseware
-
Others
Create interactive maps, and discover patterns in geospatial data.
- Subjects:
- Land Surveying and Geo-Informatics and Computing
- Keywords:
- Geospatial data Python (Computer program language)
- Resource Type:
- Others
-
Courseware
This class is designed to expose you to the cycles of disasters, the roots of emergency planning in the U.S., how to understand and map vulnerabilities, and expose you to the disaster planning in different contexts, including in developing countries.
- Subjects:
- Disaster Control and Management
- Keywords:
- Hazard mitigation Emergency management Disaster relief
- Resource Type:
- Courseware
-
Courseware
This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. During the course they discuss material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease. This course also examines the science behind mitigation and adaptation proposals.
- Subjects:
- Environmental Engineering
- Keywords:
- Global temperature changes Climatic changes Global warming
- Resource Type:
- Courseware
-
Video
Sinkholes form through both natural and human-made processes. Most of us think about erosion on the surface of the earth, but erosion can occur in the subsurface as well. In fact, scientist and engineers have a very creative name for just such a process: internal erosion. If just the right factors come together in the subsurface, some very interesting things can occur, including sinkholes.
- Subjects:
- Geotechnical Engineering
- Keywords:
- Sinkholes Soil erosion
- Resource Type:
- Video
-
Video
We normally build a dam to hold water back and store it for use in water supply, irrigation, hydropower, or flood control. But sometimes we have to let some water go. Whether we need it downstream or the impounded water behind the dam is simply too full to store any more, nearly every dam needs a spillway to safely discharge water. The spillway is a critical part of any dam and often the most complex component. So how does it work?
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydraulic structures Spillways Dams Reservoirs Diversion structures (Hydraulic engineering)
- Resource Type:
- Video
-
Video
Untangling the various equipment you might see in an electrical substation. In many ways, the grid is a one-size-fits-all system - a gigantic machine to which we all connect spinning in perfect synchrony across, in some cases, an entire continent. On the other hand, our electricity needs, including when we need it, how much we need, and how reliably it should be delivered vary widely. Substations play a critical role in controlling and protecting the power grid.
- Subjects:
- Building Services Engineering and Electrical Engineering
- Keywords:
- Electric power distribution Electric substations
- Resource Type:
- Video
-
Video
Traffic management in dense urban areas is an extremely complex problem with a host of conflicting goals and challenges. One of the most fundamental of those challenges happens at an intersection, where multiple streams of traffic - including vehicles, bikes and pedestrians - need to safely, and with any luck, efficiently, cross each others’ paths. However we accommodate it now or in future, traffic will continue to be one of the biggest challenges in our urban areas and traffic signals will continue to be one of its solutions.
- Subjects:
- Transportation
- Keywords:
- Traffic signs signals Roads -- Interchanges intersections Traffic flow
- Resource Type:
- Video
-
Video
This video gives a quick description and demo of this ingenious pump. A hydraulic ram is a clever device invented over 200 years ago that can pump water uphill with no other external source of power except for the water flowing into it and there is a way to take advantage of this normally inauspicious effect for a beneficial use. The ram pump is an ingenious way to take advantage of the properties of fluids. We all need water for a variety of reasons, so being able to move it where we need it without any fancy equipment or external sources of power is a pretty nice tool to have in your toolbox.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydraulic rams Pumping machinery
- Resource Type:
- Video
-
Video
The modern world depends on electricity. It’s a crucial resource, especially in urban areas, but electricity can’t be created, stored, and provided at a later time. The instant it’s produced, it’s used no matter how far apart the producer is from the user. And the infrastructure that makes all this possible is one of humanity’s most important and fascinating engineering achievements: the power grid.
- Subjects:
- Building Services Engineering and Electrical Engineering
- Keywords:
- Electric power distribution
- Resource Type:
- Video
-
Video
This video continues the series on the power grid by diving deeper into the engineering of large-scale electricity generation. The importance of electricity in our modern world can hardly be overstated. What was a luxury a hundred years ago is now a critical component to the safety, prosperity, and well-being of nearly everyone. Generation is the first step electricity takes on its journey through the power grid, the gigantic machine that delivers energy to millions of people day in and day out. So how does it work?
- Subjects:
- Building Services Engineering and Electrical Engineering
- Keywords:
- Electric power production
- Resource Type:
- Video
-
Video
The Internet of Things gives us access to the data from millions of devices. But how does it work, and what can we do with all that data? Find out in this animated tutorial from IBM's Think Academy. For more information on IBM and the Internet of Things, please visit: http://www.ibm.com/IoT
- Subjects:
- Electronic and Information Engineering
- Keywords:
- Embedded computer systems Internet of things
- Resource Type:
- Video
-
Video
This video explores the protective systems that keep the power grid from self destructing. We usually think of the power grid in terms of its visible parts: power plants, high-voltage lines, and substations. But, much of the complexity of power grid comes in how we protect it when things go wrong. When your power goes out, it’s easy to be frustrated at the inconvenience, but consider also being thankful that it probably means things are working as designed to protect the grid as a whole and ensure a speedy and cost-effective repair to the fault.
- Subjects:
- Building Services Engineering and Electrical Engineering
- Keywords:
- Electric power failures -- Prevention Electric power distribution Electric power failures
- Resource Type:
- Video
-
Video
In civil engineering, quicksand is more than just a puddle of mud! The "quick condition" occurs when seepage reduces the effective stress of a soil. This can lead to some dangerous conditions, especially if the seepage causes piping erosion to occur at a dam.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Seepage Dam failures Quicks Fluid mechanics
- Resource Type:
- Video
-
Video
This video shows an interesting case study of how a drone delivery service was designed and operated in Rwanda.
- Subjects:
- Logistics and Enterprise Engineering, Industrial and Systems Engineering, and Transportation
- Keywords:
- Rwa Drone aircraft Business logistics
- Resource Type:
- Video
-
Video
Expansive soils cause more property damage per year than earthquakes, floods, hurricanes, and tornadoes combined. Expansive soils are a slow-moving geologic phenomenon, which makes them not very news-worthy. However, they still cause a tremendous amount of damage to buildings and the public infrastructure we rely on every day.
- Subjects:
- Building Services Engineering, Land Surveying and Geo-Informatics, and Building and Real Estate
- Keywords:
- Foundations Soil mechanics Swelling soils
- Resource Type:
- Video
-
MOOC
Virtual reality is changing the way we interact with the world. But how does it work, what hardware is involved, and how is software written for it? In this course, part of the Virtual Reality Professional Certificate program, we will explore the foundations of user-friendly virtual reality app development for consumers, as well as enterprise solutions. Both hardware and software aspects will be discussed. You will learn to evaluate devices necessary for virtual reality applications, what their differences are, how you write interactive applications for virtual reality, and we will discuss the most frequent problems you are going to need to solve to write virtual reality software. In this course, you will explore the basics of virtual reality software through copying and modifying JavaScript to explore tradeoffs in VR application design. Extensive programming experience is not required. By the end of this course, you will understand what is important for successful virtual reality software and learn how to write simple virtual reality programs themselves with WebVR. This course is taught by an instructor with almost two decades of experience in virtual reality who leads the Immersive Visualization Laboratory at UC San Diego.
- Subjects:
- Interactive and Digital Media and Computing
- Keywords:
- Computer simulation Virtual reality Human-computer interaction
- Resource Type:
- MOOC
-
Video
This video discusses the purpose and function of elevated water storage tanks. The job of finding enough water, making it safe to use, and then reliably distributing it to the system customers with almost no downtime is a monumental task that requires a lot of infrastructure. And, probably the most visible component of a public water system is the elevated storage tank, also known as a water tower.
- Subjects:
- Building Services Engineering
- Keywords:
- Tanks Water towers Water-supply
- Resource Type:
- Video
-
Video
This video gives a quick overview of how we build underwater structures. Oceans, rivers, and lakes are often beautiful, but they’re not necessarily convenient places to build things. Yet, many types of the infrastructure we depend on every day, including wharves, bridges, and dams, are founded below the water. How do they do it? On this episode, we're talking about different types of underwater construction, including cofferdams, diversions, caissons, and drilled shafts. Whether the construction site is on the bottom of a lake or river, or simply located in the floodplain and only at risk during extreme weather, engineers and construction contractors put a significant amount of thought and consideration into the feasibility and costs of managing this water.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Underwater construction Hydraulic engineering
- Resource Type:
- Video
-
Video
Discussing some of the fascinating engineering that goes into overhead electric power transmission lines. In the past, power generating plants were only able to serve their local areas. As power plants grew larger and further away from populated areas, the need for ways to efficiently move electricity over long distances has become more and more important. Stringing power lines across the landscape to connect cities to power plants may seem as simple as connecting an extension cord to an outlet, but the engineering behind these electric superhighways is more complicated and fascinating than you might think.
- Subjects:
- Building Services Engineering and Electrical Engineering
- Keywords:
- Electric power transmission Electric lines
- Resource Type:
- Video
-
Video
The Earth intercepts a lot of solar power: 173,000 terawatts. That’s 10,000 times more power than the planet’s population uses. So is it possible that one day the world could be completely reliant on solar energy? Richard Komp examines how solar panels convert solar energy to electrical energy.
- Subjects:
- Building Services Engineering and Environmental Engineering
- Keywords:
- Renewable energy sources Solar energy Photovoltaic power generation
- Resource Type:
- Video
-
Video
This video explores a primer on one of the most important companions to civil engineering: land surveyors. Conventional measurement tools like a tape measure and protractor don't work for large civil structures and public works projects. Surveying is essentially the science of measuring big stuff. In this video I give a quick explanation of how surveying works and show a few ways you can do your own leveling survey at home. No sines, cosines, or tangents required!
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Surveying
- Resource Type:
- Video
-
Video
Water hammer can work in both directions, and I only discussed one of those in the previous video (https://youtu.be/xoLmVFAFjn4). This episode revisits that demonstration to show how water hammer can form a vacuum pressure in a pipe. Momentum carrying fluid away from a valve wants to keep going even after the valve is closed. This generates a negative pressure than can cause major damage!
- Subjects:
- Building Services Engineering
- Keywords:
- Valves Water hammer Hydraulic control Hydraulic transients Relief valves Fluid mechanics
- Resource Type:
- Video
-
Video
This video discusses pros and cons of building higher, from the both technical and cost perspectives.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Building -- Estimates Skyscrapers Housing City planning Tall buildings
- Resource Type:
- Video
-
MOOC
Why are hybrid vehicles still more common than battery electric ones? Why are electric vehicles still more expensive than conventional or hybrid ones? In this course, you will get the answers to this and much more. While electric motors can improve vehicles regarding performance, energy consumption and emissions, they suffer from high cost and weight of batteries. Smart combinations of electric motors and combustion engines in a hybrid powertrain can combine these strengths with the advantages of combustion engines. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about hybridpowertrains. Inthis course, we willexamine different mechanical layouts of hybrid powertrains and how they influence the performance and complexity of the powertrain. Different sizing of powertrains in micro, mild, full hybrids, as well as plug-in hybrids, is also discussed and you'll learn how they can be modelled and analyzed for example by simulation of driving cycles. You will also learn about the Energy Management system and how this controls the hybrid powertrain modes and when to charge and discharge the battery. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Hybrid electric vehicles
- Resource Type:
- MOOC
-
Video
Is hydrogen the solution to electric cars? This video discusses the safety of hydrogen, cost of hydrogen, infrastructure set up for hydrogen charging, and how hydrogen fuel cells work in vehicles.
-
Courseware
This course discusses the requirement, interpretation, methods and design of hydrological measurements. Following topics are covered: Accuracy requirements of measurements and error propagation: Related to a problem the required accuracy of measurements and the consequences for accuracy in the final result are discussed. Different types of errors are handled. Propagation of errors; for dependent and independent measurements, from mathematical relations and regression is demonstrated. Recapitulated is the theory of regression and correlation. Interpretation of measurements, data completion: By standard statistical methods screening of measured data is performed; double mass analysis, residual mass, simple rainfall-runoff modelling. Detection of trends; split record tests, Spearman rank tests. Methods to fill data gaps and do filtering on data series for noise reduction. Methods of hydrological measurements and measuring equipment: To determine quantitatively the most important elements in the hydrological cycle an overview is presented of most common hydrological measurements, measuring equipment and indirect determination methods i.e. for precipitation, evaporation, transpiration, river discharge and groundwater tables. Use, purpose and measurement techniques for tracers in hydrology is discussed. Advantages and disadvantages and specific condition/application of methods are discussed. Equipment is demonstrated and discussed. Areal distributed observation: Areal interpolation techniques of point observations; inverse distance, Thiessen, contouring, Kriging. Comparison of interpolation techniques and estimation of errors. Correlation analysis of areal distributed observation of rainfall. Design of measuring networks: Based on correlation characteristics from point measurements (e.g. rainfall stations) and accuracy requirements the design of a network of stations is demonstrated.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydrology -- Measurement Hydrology
- Resource Type:
- Courseware
-
Courseware
The course deals with the principles of hydrology of catchment areas, rivers and deltas.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Watersheds Estuaries Saline water barriers Hydrology Floods Rivers
- Resource Type:
- Courseware
-
Others
The IEA is committed to shaping a secure and sustainable energy future for all
-
Courseware
For the first time in history, the number of world citizens without access to electricity services has dropped below one billion, but still more than 2.8 billion people lack access to clean and affordable cooking fuels. Access to clean, affordable and reliable energy services for all world citizens is a precondition for the achievement of many other Sustainable Development Goals, such as health and economic development. The provision of sustainable energy services for all is not just a technological challenge or one confined to developing countries. Industrial and post-industrial societies also need to address issues of energy poverty and energy injustice. Rather than tackling the technological dimension of the formidable challenge to provide an inclusive energy system with renewable and climate-neutral energy resources, this course will focus on its social and institutional dimension. Introduction to the principle of the 4 As of energy services – Accessibility, Availability, Affordability, and Acceptability (environmental and social) will enrich your perspective as an engineering professional. Balancing these four critical and interdependent criteria is a recurrent challenge for individuals and society as a whole, as the characterization of the four As evolves with economic development and changing societal preferences. You will learn how the rules of the game as defined in laws, regulation and market designs impact the balance between the 4As. Using a wider socio-technical systems perspective you will discover new solutions for the inclusive provision of energy services beyond the purely technological solutions. After this course you can engage in a richer, more informed debate about how to achieve an inclusive energy system. You will be able to translate this knowledge into strategies to serve society’s future energy needs. The cases presented from developed and developing countries will help you to develop and test your analytical skills. Interviews with industry leaders shaping the energy system will challenge you to reflect on the position these leaders take and the interests they serve. Lastly, you will put yourself to the test by demonstrating your newly acquired knowledge and skills as a strategic policy advisor, in writing guidelines for a strategic action plan for the energy system and institutional context which are relevant for you, in your company, your city or your country.
- Subjects:
- Environmental Engineering and Environmental Policy and Planning
- Keywords:
- Energy policy Sustainable development Power resources -- Economic aspects Power resources -- Environmental aspects
- Resource Type:
- Courseware
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
Courseware
The lectures introduce a number of topics that are important for IWRM and the modeling exercise. The lectures introduce water management issues in the Netherlands, Rhine Basin, and Volta Basin. The role-play is meant to experience some of the social processes that, together with technical knowledge, determine water management.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water resources development Netherls Water-supply -- Management Water-supply
- Resource Type:
- Courseware
-
Others
Learn SQL for working with databases, using Google BigQuery to scale to massive datasets.
- Subjects:
- Computing
- Keywords:
- Database management SQL (Computer program language)
- Resource Type:
- Others
-
Courseware
Learn about urban water services, focusing on conventional technologies for drinking water treatment. This course focuses on conventional technologies for drinking water treatment. Unit processes, involved in the treatment chain, are discussed as well as the physical, chemical and biological processes involved. The emphasis is on the effect of treatment on water quality and the dimensions of the unit processes in the treatment chain. After the course one should be able to recognise the process units, describe their function, and make basic calculations for a preliminary design of a drinking water treatment plant.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Water treatment plants -- Design construction Drinking water -- Purification Water-supply
- Resource Type:
- Courseware
-
Courseware
This course focuses on national environmental and energy policy-making; environmental ethics; the techniques of environmental analysis; and strategies for collaborative environmental decision-making. The primary objective of the course is to help students formulate a personal theory of environmental planning practice. The course is taught comparatively, with constant references to examples from around the world. It is required of all graduate students pursuing an environmental policy and planning specialization in the Department of Urban Studies and Planning at MIT. This course is the first subject in the Environmental Policy and Planning sequence. It reviews philosophical debates including growth vs. deep ecology, "command-and-control" vs. market-oriented approaches to regulation, and the importance of expertise vs. indigenous knowledge. Emphasis is placed on environmental planning techniques and strategies. Related topics include the management of sustainability, the politics of ecosystem management, environmental governance and the changing role of civil society, ecological economics, integrated assessment (combining environmental impact assessment (EIA) and risk assessment), joint fact finding in science-intensive policy disputes, environmental justice in poor communities of color, and environmental dispute resolution. Environmental Problem-Solving (Susskind et. al, 2017, Anthem Press), a video-enhanced eBook, provides students with full access to all the assigned readings, faculty commentary on the readings, and examples of the best student performance on course assignments in previous years.
- Subjects:
- Environmental Policy and Planning
- Keywords:
- Environmental protection Environmental policy
- Resource Type:
- Courseware
-
Courseware
This is an accelerated introduction to MATLAB® and its popular toolboxes. Lectures are interactive, with students conducting sample MATLAB problems in real time. The course includes problem-based MATLAB assignments. Students must provide their own laptop and software. This is great preparation for classes that use MATLAB.
- Subjects:
- Computing
- Keywords:
- Engineering mathematics -- Data processing MATLAB Numerical analysis -- Computer programs
- Resource Type:
- Courseware
-
Courseware
Introduction to seismic theory, measurements and processing of seismic data to final focussed image for geological and/or physical interpretation.This course deals with the most important aspects of reflection seismics. Theory of seismic waves, aspects of data acquisition (seismic sources, receivers and recorders), and of data processing (CMP processing, velocity analysis, stacking, migration) will be dealt with. The course will be supplemented by a practical of 6 afternoons where the students will see the most important data-processing steps via exercises (in Matlab).
- Subjects:
- Land Surveying and Geo-Informatics and Disaster Control and Management
- Keywords:
- Seismic prospecting Seismometry Earthquakes Seismic reflection method
- Resource Type:
- Courseware
-
Courseware
Groningen, a province in the northeast of the Netherlands, is experiencing earthquakes due to the extraction of gas. This phenomenon is called induced seismicity. But what is induced seismicity? And how can the risk to life safety and the consequences for the built environment be reduced? The Groningen situation is unique and for this reason, solutions for the built environment cannot simply be copied from abroad. To contribute to a basic understanding of the various topics in this field, knowledge lectures have been developed as Open Course Ware by a large number of scientists and practitioners.
- Subjects:
- Land Surveying and Geo-Informatics and Disaster Control and Management
- Keywords:
- Netherls -- Groningen Earthquakes Induced seismicity
- Resource Type:
- Courseware
-
Courseware
This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Energy consumption -- Environmental aspects Renewable energy sources Sustainable development
- Resource Type:
- Courseware
-
Courseware
This course examines both the structure of cities and the ways they can be changed. It introduces graduate students to theories about how cities are formed, and the practice of urban design and development, using U.S. and international examples. The course is organized into two parts: Part 1 analyzes the forces which act to shape and to change cities; Part 2 surveys key models of physical form and social intervention that have been deployed to resolve competing forces acting on the city. This course includes models of urban analysis, contemporary theories of urban design, and implementation strategies. Lectures in this course are supplemented by discussion periods, student work, and field trips.
- Subjects:
- Building and Real Estate
- Keywords:
- Cities towns City planning
- Resource Type:
- Courseware
-
Courseware
Water is essential for life on earth and of crucial importance for society. Also within our climate water plays a major role. The natural cycle of ocean to atmosphere, by precipitation back to earth and by rivers and aquifers to the oceans has a decisive impact on regional and global climate patterns. This course will cover six main topics: 1. Global water cycle. In this module you will learn to explain the different processes of the global water cycle. 2. Water systems. In this module you will learn to describe the flows of water and sand in different riverine, coastal and ocean systems. 3. Water and climate change. In this module you will learn to identify mechanisms of climate change and you will learn to explain the interplay of climate change, sea level, clouds, rainfall and future weather. 4. Interventions. In this module you will learn to explain why, when and which engineering interventions are needed in rivers, coast and urban environment. 5. Water resource management. In this module you will learn to explain why water for food and water for cities are the main challenges in water management and what the possibilities and limitations of reservoirs and groundwater are to improve water availability. 6. Challenges. In this module you will learn to explain the challenges in better understanding and adapting to the impact of climate change on water for the coming 50 years.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Hydrologic cycle Water-supply -- Effect of global warming on Water-supply -- Management
- Resource Type:
- Courseware
-
Courseware
The course will discuss the objectives and functions of water management systems for irrigation and drainage purposes. Analysing system requirements in terms of technical engineering constraints, management possibilities and water users (wishes and options) is central. This includes the design and operation of regulation structures, dams, reservoirs, weirs and conveyance systems; balancing water supply and water requirements in time and space is a main focus of analysis too.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Drainage -- Management Irrigation -- Management
- Resource Type:
- Courseware
- « Previous
- Next »
- 1
- 2
- 3