Search Constraints
Number of results to display per page
Results for:
Keywords
Artificial intelligence
Remove constraint Keywords: Artificial intelligence
« Previous |
1 - 10 of 19
|
Next »
Search Results
-
Courseware
This course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, reinforcement learning, and other topics in artificial intelligence and machine learning as they incorporate them into their own Python programs. By course’s end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.
- Course related:
- COMP3011 Design and Analysis of Algorithms, COMP1001 Problem Solving Methodology in Information Technology, COMP4434 Artificial Intelligence, and COMP2011 Data Structures
- Subjects:
- Human-Computer Interaction and Computing
- Keywords:
- Computer programming Computer science Python (Computer program language) Artificial intelligence
- Resource Type:
- Courseware
-
MOOC
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications.
This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.
This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.
It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
- Course related:
- AAE5103 Artificial Intelligence in Aviation Industry
- Subjects:
- Computing
- Keywords:
- Machine learning Artificial intelligence
- Resource Type:
- MOOC
-
Others
Kaggle offers a no-setup, customizable, Jupyter Notebooks environment. Access GPUs at no cost to you and a huge repository of community published data & code. Inside Kaggle you’ll find all the code & data you need to do your data science work. Use over 50,000 public datasets and 400,000 public notebooks to conquer any analysis in no time.
- Subjects:
- Computing
- Keywords:
- Machine learning Artificial intelligence Big data
- Resource Type:
- Others
-
Video
What happens when technology knows more about us than we do? Poppy Crum studies how we express emotions -- and she suggests the end of the poker face is near, as new tech makes it easy to see the signals that give away how we're feeling. In a talk and demo, she shows how "empathetic technology" can read physical signals like body temperature and the chemical composition of our breath to inform on our emotional state. For better or for worse. "If we recognize the power of becoming technological empaths, we get this opportunity where technology can help us bridge the emotional and cognitive divide," Crum says.
- Subjects:
- Technology, Electronic and Information Engineering, and Mechnical Engineering
- Keywords:
- Emotion recognition Artificial intelligence
- Resource Type:
- Video
-
Video
In 20 episodes, Jabril will teach you about Artificial Intelligence and Machine Learning! This course is based on a university-level curriculum. By the end of the course, you will be able to: * Define, differentiate, and provide examples of Artificial Intelligence and three types of Machine Learning: supervised, unsupervised, and reinforcement * Understand how different AI and ML approaches can be combined to create compelling applications such as natural language processing, robotics, recommender systems, and web search * Implement several types of AI to classify images, generate text from examples, play video games, and recommend content based on past preferences * Understand the causes of algorithmic bias and audit datasets for several of these causes
- Subjects:
- Computing
- Keywords:
- Human-Computer Interaction Machine learning Artificial intelligence
- Resource Type:
- Video
-
MOOC
In this course you will learn what Artificial Intelligence (AI) is, explore use cases and applications of AI, understand AI concepts and terms like machine learning, deep learning and neural networks. You will be exposed to various issues and concerns surrounding AI such as ethics and bias, & jobs, and get advice from experts about learning and starting a career in AI. You will also demonstrate AI in action with a mini project. This course does not require any programming or computer science expertise and is designed to introduce the basics of AI to anyone whether you have a technical background or not.
- Subjects:
- Computing
- Keywords:
- Artificial intelligence
- Resource Type:
- MOOC
-
MOOC
AI is not only for engineers. If you want your organization to become better at using AI, this is the course to tell everyone--especially your non-technical colleagues--to take. In this course, you will learn: - The meaning behind common AI terminology, including neural networks, machine learning, deep learning, and data science - What AI realistically can--and cannot--do - How to spot opportunities to apply AI to problems in your own organization - What it feels like to build machine learning and data science projects - How to work with an AI team and build an AI strategy in your company - How to navigate ethical and societal discussions surrounding AI
- Subjects:
- Computing
- Keywords:
- Artificial intelligence
- Resource Type:
- MOOC
-
Video
In this lecture, we consider strategies for adversarial games such as chess. We discuss the minimax algorithm, and how alpha-beta pruning improves its efficiency. We then examine progressive deepening, which ensures that some answer is always available.
- Course related:
- COMP4431 Artificial Intelligence
- Subjects:
- Computing and Mathematics and Statistics
- Keywords:
- Artificial intelligence
- Resource Type:
- Video
-
e-book
Este libro es una introducción al area de la Inteligencia Artificial y presenta algunas de las aplicaciones que puede tener en la vida real en diversos campos de aplicación, El libro esta compuesto de ocho capítulos los cuales abarcan los antededentes, algunos conceptos importantes para la resolución de problemas como es la representación de conocimiento, el planteamiento de los problemas. Asimismo se menciona la teoría de agentes por un lado y por otro lo que es el aprendizaje computacional. Otra area que se aborta es la computación evolutivo y los algoritmos bioinspirados para la resolución de problemas, dandole enfasis a los problemas de optimizacion. Por ultimo se menciona una nueva tendencia en el area de las ciencias computacionales como es el uso de las GPUs para trabajar de una manera mas rapida al realizar el procesamiento en paralelo.
- Subjects:
- Computing
- Keywords:
- Artificial intelligence Textbooks
- Resource Type:
- e-book
-
e-book
A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and introductory Python programming using open-source Jupyter Notebooks. This engaging read will allow any dedicated learner to build the skills necessary to contribute to the Data Science revolution, regardless of background.
- Subjects:
- Computing
- Keywords:
- Data mining Computer science Artificial intelligence Textbooks
- Resource Type:
- e-book