Search Constraints
Number of results to display per page
Results for:
Keywords
Python (Computer program language)
Remove constraint Keywords: Python (Computer program language)
1 - 4 of 4
Search Results
-
MOOC
The building industry is exploding with data sources that impact the energy performance of the built environment and health and well-being of occupants. Spreadsheets just don’t cut it anymore as the sole analytics tool for professionals in this field. Participating in mainstream data science courses might provide skills such as programming and statistics, however the applied context to buildings is missing, which is the most important part for beginners. This course focuses on the development of data science skills for professionals specifically in the built environment sector. It targets architects, engineers, construction and facilities managers with little or no previous programming experience. An introduction to data science skills is given in the context of the building life cycle phases. Participants will use large, open data sets from the design, construction, and operations of buildings to learn and practice data science techniques. Essentially this course is designed to add new tools and skills to supplement spreadsheets. Major technical topics include data loading, processing, visualization, and basic machine learning using the Python programming language, the Pandas data analytics and sci-kit learn machine learning libraries, and the web-based Colaboratory environment. In addition, the course will provide numerous learning paths for various built environment-related tasks to facilitate further growth.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Python (Computer program language) City planning -- Statistical methods Information visualization
- Resource Type:
- MOOC
-
e-book
Think DSP is an introduction to Digital Signal Processing in Python. The premise of this book (and the other books in the Think X series) is that if you know how to program, you can use that skill to learn other things. The author is writing this book because he thinks the conventional approach to digital signal processing is backward: most books (and the classes that use them) present the material bottom-up, starting with mathematical abstractions like phasors.
-
e-book
Think Bayes is an introduction to Bayesian statistics using computational methods. The premise of this book, and the other books in the Think X series, is that if you know how to program, you can use that skill to learn other topics. Most books on Bayesian statistics use mathematical notation and present ideas in terms of mathematical concepts like calculus. This book uses Python code instead of math, and discrete approximations instead of continuous mathematics. As a result, what would be an integral in a math book becomes a summation, and most operations on probability distributions are simple loops. I think this presentation is easier to understand, at least for people with programming skills. It is also more general, because when we make modeling decisions, we can choose the most appropriate model without worrying too much about whether the model lends itself to conventional analysis. Also, it provides a smooth development path from simple examples to real-world problems.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mathematics and Statistics
- Keywords:
- Python (Computer program language) Textbooks Bayesian statistical decision theory
- Resource Type:
- e-book
-
Others
In these comprehensive video courses, created by Santiago Basulto, you will learn the whole process of data analysis. You'll be reading data from multiple sources (CSV, SQL, Excel), process that data using NumPy and Pandas, and visualize it using Matplotlib and Seaborn, Additionally, we've included a thorough Jupyter Notebook course, and a quick Python reference to refresh your programming skills.
- Course related:
- AMA1600 Fundamentals of AI and Data Analytics and AMA1751 Linear Algebra
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mathematics and Statistics
- Keywords:
- Computer programming Computer science Python (Computer program language)
- Resource Type:
- Others