Search Constraints
Number of results to display per page
Results for:
Language
English
Remove constraint Language: English
Year
2017
Remove constraint Year: 2017
« Previous |
1 - 10 of 32
|
Next »
Search Results
-
Courseware
This course discusses theoretical concepts and analysis of wave problems in science and engineering. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics, blood flow, nondestructive evaluation, and other applications.
- Subjects:
- Mechanical Engineering and Physics
- Keywords:
- Wave mechanics Wave-motion Theory of
- Resource Type:
- Courseware
-
Courseware
In this engineering course, you will learn about the engineering principles that play an important role in all of these and more phenomena. You will learn about microbalances, radiation, convection, diffusion and more and their applications in everyday life. This advanced course is for engineers who want to refresh their knowledge, engineering students who are eager to learn more about heat/mass transport and for all who have fun in explaining the science of phenomena in nature.
- Subjects:
- Mechanical Engineering
- Keywords:
- Transport theory Energy transfer Heat -- Transmission Mass transfer
- Resource Type:
- Courseware
-
Courseware
Are you an entrepreneur, or do you have a passion for building your own technology startup? This course will help and encourage you to start a successful technology-based venture. If you always wanted to become an entrepreneur, or if you are simply interested in putting a new technology to innovative use, this course is for you. This course helps you understand the process of entrepreneurship from a technology-oriented background. The course is made up of modules that are presented by experts in the field of entrepreneurship and technology. Modules include: - Team Building - Opportunity Recognition - Financing - Customer Acquisition
- Subjects:
- Management
- Keywords:
- Technological innovations -- Economic aspects Entrepreneurship High technology industries -- Management
- Resource Type:
- Courseware
-
Courseware
In this nuclear energy course, we will tackle provocative questions such as: -Is nuclear energy a good substitute for fossil fuels to reduce our CO2 emission or not? -Can nuclear reactors operate safely without any harm to the public and environment? -How much nuclear waste is produced and how long does it need to be stored safely? -How can we make nuclear energy clean and more sustainable? -How much are nuclear energy costs? You will learn the physics behind nuclear science, how to gain energy from nuclear fission, how nuclear reactors operate safely, and the life cycle of nuclear fuel: from mining to disposal. In the last part of the course, we will focus on what matters most in the public debate: the economic and social impact of nuclear energy but also the future of energy systems. Practically, we will: -Teach you about nuclear science and technology (radiation and radioactivity, nuclear reactions, nuclear reactors and fuel cycle, economics of nuclear energy, and the sociality aspects) -Show you short videos about the theory and practical implementation of nuclear energy -Stimulate discussion and debate about nuclear energy -Ask you to formulate your own opinion about nuclear energy and its role in society The GENTLE consortium has sponsored and prepared this course. GENTLE is focused on maintaining the current high level of nuclear safety, and developing a highly skilled and well informed nuclear workforce, following the conclusion of the Council of the EU that it “it is essential to maintain in the European Union a high level of training in the nuclear field” to deal with reactor fleet safely, decommission obsolete plants, be involved in new builds where policy dictates, and deal with the legacy and future radioactive wastes.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Nuclear engineering Nuclear physics Nuclear energy
- Resource Type:
- Courseware
-
Courseware
Have you ever wondered what it takes to get your train on the right platform at the scheduled time every day? Understanding the complexity behind today’s sophisticated railway systems will give you a better insight into how this safe and reliable transportation system works. We will show you the many factors which are involved and how multiple people, behind the scenes, have a daily task that enables you to get from home to work. Journey with us into the world of rail – a complex system that connects people, cities and countries. Railway systems entail much more than a train and a track. They are based on advanced technical and operational solutions, dealing with continuously changing demands for more efficient transport for both passengers and freight every day. Each system consists of many components that must be properly integrated: from trains, tracks, stations, signaling and control systems, through monitoring, maintenance and the impact on cities, landscape and people. This integration is the big challenge and the source of many train delays, inconvenient connections and other issues that impact our society. This engineering course attempts to tackle those issues by introducing you to a holistic approach to railway systems engineering. You will learn how the system components depend on each other to create a reliable, efficient and state-of-the-art network.
- Subjects:
- Electrical Engineering and Transportation
- Keywords:
- Railroad engineering
- Resource Type:
- Courseware
-
Courseware
A transition to sustainable energy is needed for our climate and welfare. In this engineering course, you will learn how to assess the potential for energy reduction and the potential of renewable energy sources like wind, solar and biomass. You’ll learn how to integrate these sources in an energy system, like an electricity network and take an engineering approach to look for solutions and design a 100% sustainable energy system.
- Subjects:
- Electrical Engineering
- Keywords:
- Solar energy Renewable energy sources Biomass energy Wind power Sustainable development
- Resource Type:
- Courseware
-
Courseware
The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.
- Subjects:
- Electrical Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic cells Photovoltaic power generation
- Resource Type:
- Courseware
-
Courseware
The technologies used to produce solar cells and photovoltaic modules are advancing to deliver highly efficient and flexible solar panels. In this course you will explore the main PV technologies in the current market. You will gain in-depth knowledge about crystalline silicon based solar cells (90% market share) as well as other up and coming technologies like CdTe, CIGS and Perovskites. This course provides answers to the questions: How are solar cells made from raw materials? Which technologies have the potential to be the major players for different applications in the future?
- Subjects:
- Electrical Engineering
- Keywords:
- Solar cells Photovoltaic power systems Photovoltaic power generation Silicon solar cells
- Resource Type:
- Courseware
-
e-book
In the era of Internet of Things (IoT) and with the explosive worldwide growth of electronic data volume, and associated need of processing, analysis, and storage of such humongous volume of data, several new challenges are faced in protecting privacy of sensitive data and securing systems by designing novel schemes for secure authentication, integrity protection, encryption, and non-repudiation. Lightweight symmetric key cryptography and adaptive network security algorithms are in demand for mitigating these challenges. This book presents some of the state-of-the-art research work in the field of cryptography and security in computing and communications. It is a valuable source of knowledge for researchers, engineers, practitioners, graduates, and doctoral students who are working in the field of cryptography, network security, and security and privacy issues in the Internet of Things (IoT). It will also be useful for faculty members of graduate schools and universities.
- Subjects:
- Computing
- Keywords:
- Data encryption (Computer science) Computer security Computer networks -- Security measures Data protection
- Resource Type:
- e-book
-
Courseware
This course studies the fundamentals of how the design and operation of internal combustion engines affect their performance, efficiency, fuel requirements, and environmental impact. Topics include fluid flow, thermodynamics, combustion, heat transfer and friction phenomena, and fuel properties, with reference to engine power, efficiency, and emissions.
- Subjects:
- Mechanical Engineering
- Keywords:
- Internal combustion engines
- Resource Type:
- Courseware
- « Previous
- Next »
- 1
- 2
- 3
- 4