Search Constraints
Number of results to display per page
Results for:
« Previous |
1 - 50 of 97
|
Next »
Search Results
-
Video
Section III Wave Motion 3.1.2 Properties of Waves Diffraction
- Course related:
- AP10006 Physics II
- Subjects:
- Physics
- Keywords:
- Physical sciences Sound-waves Diffraction
- Resource Type:
- Video
-
Video
An online lecture on the topic of "What is Microgravity? Discovering Interesting Phenomena in Microgravity".This lecture of “Science World: Exploring Space to Benefit Mankind” Education Programme in the 2021/22 school year for secondary students, which aims to cultivate the interest of local youth in space science and elevate their enthusiasm for participating in the development of space technology.
- Subjects:
- Physics and Aeronautical and Aviation Engineering
- Keywords:
- Gravity Reduced gravity environments
- Resource Type:
- Video
-
Video
Physics and marketing don't seem to have much in common, but Dan Cobley is passionate about both. He brings these unlikely bedfellows together using Newton's second law, Heisenberg's uncertainty principle, the scientific method and the second law of thermodynamics to explain the fundamental theories of branding.
-
Video
All over the planet, giant telescopes and detectors are looking (and listening) for clues to the workings of the universe. At the INK Conference, science writer Anil Ananthaswamy tours us around these amazing installations, taking us to some of the most remote and silent places on Earth.
- Subjects:
- Physics and Cosmology and Astronomy
- Keywords:
- Astrophysics -- Research Dark matter (Astronomy)
- Resource Type:
- Video
-
Video
Learners read a description of torque and study the factors that cause its magnitude to change.
- Subjects:
- Physics
- Keywords:
- Torque -- Measurement
- Resource Type:
- Video
-
Others
The learner studies how electrons travel from one atom to the next. Examples demonstrate how voltage is created by the use of a battery or through magnetism. A quiz completes the activity.
- Subjects:
- Physics
- Keywords:
- Electricity
- Resource Type:
- Others
-
Courseware
This course discusses theoretical concepts and analysis of wave problems in science and engineering. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics, blood flow, nondestructive evaluation, and other applications.
- Subjects:
- Mechanical Engineering and Physics
- Keywords:
- Wave mechanics Wave-motion Theory of
- Resource Type:
- Courseware
-
e-book
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th – 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering. This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics. This second edition adds discussion of the use of variational principles applied to the following topics: Systems subject to initial boundary conditions The hierarchy of the related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries Non-conservative systems. Variable-mass systems. The General Theory of Relativity. The first edition of this book can be downloaded at the publisher link.
-
Video
In this screencast, you'll observe two vehicles moving across the screen at different rates then describe the motion. Additionally, you'll select the corresponding graphs of distance vs. time, velocity vs. time, and acceleration vs. time for each vehicle.
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
- Subjects:
- Physics
- Keywords:
- Thermodynamics Physics Magnetism Electricity
- Resource Type:
- e-book
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
-
e-book
This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics (including one chapter on mechanical waves, but excluding fluids), plus a brief introduction to thermodynamics. The presentation owes much to Mazur’s The Principles and Practice of Physics: conservation laws, momentum and energy, are introduced before forces, and one-dimensional setups are thoroughly explored before two-dimensional systems are considered. It contains both problems and worked-out examples.
-
Courseware
In this nuclear energy course, we will tackle provocative questions such as: -Is nuclear energy a good substitute for fossil fuels to reduce our CO2 emission or not? -Can nuclear reactors operate safely without any harm to the public and environment? -How much nuclear waste is produced and how long does it need to be stored safely? -How can we make nuclear energy clean and more sustainable? -How much are nuclear energy costs? You will learn the physics behind nuclear science, how to gain energy from nuclear fission, how nuclear reactors operate safely, and the life cycle of nuclear fuel: from mining to disposal. In the last part of the course, we will focus on what matters most in the public debate: the economic and social impact of nuclear energy but also the future of energy systems. Practically, we will: -Teach you about nuclear science and technology (radiation and radioactivity, nuclear reactions, nuclear reactors and fuel cycle, economics of nuclear energy, and the sociality aspects) -Show you short videos about the theory and practical implementation of nuclear energy -Stimulate discussion and debate about nuclear energy -Ask you to formulate your own opinion about nuclear energy and its role in society The GENTLE consortium has sponsored and prepared this course. GENTLE is focused on maintaining the current high level of nuclear safety, and developing a highly skilled and well informed nuclear workforce, following the conclusion of the Council of the EU that it “it is essential to maintain in the European Union a high level of training in the nuclear field” to deal with reactor fleet safely, decommission obsolete plants, be involved in new builds where policy dictates, and deal with the legacy and future radioactive wastes.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Nuclear engineering Nuclear physics Nuclear energy
- Resource Type:
- Courseware
-
Video
You're on an airplane when you feel a sudden jolt. Outside your window nothing seems to be happening, yet the plane continues to rattle you and your fellow passengers as it passes through turbulent air in the atmosphere. What exactly is turbulence, and why does it happen? Tomás Chor dives into one of the prevailing mysteries of physics: the complex phenomenon of turbulence.
- Subjects:
- Physics
- Keywords:
- Turbulence Atmospheric turbulence
- Resource Type:
- Video
-
Others
In this animated object, learners examine how thermal energy is transferred by conduction, convection, and radiation. A brief quiz completes the activity.
- Subjects:
- Physics
- Keywords:
- Heat -- Transmission
- Resource Type:
- Others
-
Video
Physicist Werner Heisenberg said, "When I meet God, I am going to ask him two questions: why relativity? And why turbulence? I really believe he will have an answer for the first." As difficult as turbulence is to understand mathematically, we can use art to depict the way it looks. Natalya St. Clair illustrates how Van Gogh captured this deep mystery of movement, fluid and light in his work.
- Subjects:
- Physics
- Keywords:
- Turbulence Starry night (Gogh Vincent van)
- Resource Type:
- Video
-
Video
In the third act of "Swan Lake", the Black Swan pulls off a seemingly endless series of turns, bobbing up and down on one pointed foot and spinning around and around and around ... thirty-two times. How is this move — which is called a fouetté — even possible? Arleen Sugano unravels the physics of this famous ballet move.
- Subjects:
- Physics
- Keywords:
- Ballet dancing Physics
- Resource Type:
- Video
-
Video
Whether or not you realize it, surfers are masters of complicated physics. The science of surfing begins as soon as a board first hits the water. Surfers may not be thinking about weather patterns in the Pacific, tectonic geology or fluid mechanics, but the art of catching the perfect wave relies on all these things and more. Nick Pizzo dives into the gnarly physics that make surfing possible.
-
Video
Traveling is extremely arduous for microscopic sperm -- think of a human trying to swim in a pool made of...other humans. We can compare the journey of a sperm to that of a sperm whale by calculating the Reynolds number, a prediction of how fluid will behave, often fluctuating due to size of the swimmer. Aatish Bhatia explores the great (albeit tiny) sperm's journey.
- Subjects:
- Physics
- Keywords:
- Fluid dynamics Sperm whale Spermatozoa
- Resource Type:
- Video
-
Video
An online lecture on the topic of "The Magic of Light".This lecture is suitable for secondary school and university students as well as the general public.
- Subjects:
- Physics
- Keywords:
- Light Reflection (Optics)
- Resource Type:
- Video
-
Video
Physics doesn't just happen in a fancy lab -- it happens when you push a piece of buttered toast off the table or drop a couple of raisins in a fizzy drink or watch a coffee spill dry. Become a more interesting dinner guest as physicist Helen Czerski presents various concepts in physics you can become familiar with using everyday things found in your kitchen.
- Subjects:
- Physics
- Keywords:
- Physics -- Popular works
- Resource Type:
- Video
-
Video
On March 17, 2014, a group of physicists announced a thrilling discovery: the “smoking gun” data for the idea of an inflationary universe, a clue to the Big Bang. For non-physicists, what does it mean? TED asked Allan Adams to briefly explain the results, in this improvised talk illustrated by Randall Munroe of xkcd.
- Subjects:
- Physics and Cosmology and Astronomy
- Keywords:
- Inflationary universe Gravitational waves
- Resource Type:
- Video
-
Courseware
In electrical engineering, solid-state materials and the properties play an essential role. A thorough understanding of the physics of metals, insulators and semiconductor materials is essential for designing new electronic devices and circuits. After short introduction of the IC fabrication process, the course starts with the crystallography. This will be followed by the basic principle of the quantum mechanics, the sold-state physics, band-structure and the relation with electrical properties of the solid-state materials. When the material physics has been throughly understood, the physics of the semiconductor device follows quite naturally and can be understood quickly and efficiently.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Semiconductors Solid state physics Matter -- Properties
- Resource Type:
- Courseware
-
Courseware
This course is intended for students enrolling for BSc with Education and BEd degrees. Solid state physics forms the backborn of physics. The module has four units: Introduction to solid state physics; Crystal defects and mechanical properties ; Thermal and electrical properties; and Band theory & Optical properties.In the first unit/activity i.e. introduction to solid state physics. The student is expected to explain the atomic structure, describe the various atomic bonds such as ionic bonds and covalent bonds. The learning will also require students to distinguish between crystalline and amorphous solids; polycrystalline and amorphous solids and to explain the production and use of X-ray diffraction. In the second unit i.e. crystal defects and mechanical properties, the learning includes, differentiating between the different types of crystal defects: the point defects (vacancy, interstitials, and substitutional) and dislocations (screw and edge). Here, the student learns that point defects are very localised and are of atomic size, while dislocation is a disorder which extend beyond the volume of one or two atoms. The effects of the defects on mechanical, and electrical properties of these defects are also part of the learning that will take place. In unit three the learning outcomes include definitions of heat capacity, and explanations of variation of heat capacity with temperature based on the classical, Einstein and Debye models. The students will be required to use the free electron theory to explain high thermal and electrical conductivities of metals and also be able to derive and apply the Wiedermann-Frantz law. Finally, in activity four, the expected learning should enable the students to use the band theory to explain the differences between conductors, semiconductors and insulators; explain the differences between intrinsic and extrinsic semiconductors in relation to the role of doping. At the end of it all, the students use the concepts of the interaction of electromagnetic waves (light) with materials to explain optical absorption, reflectivity and transmissivity.
- Subjects:
- Physics
- Keywords:
- Solid state physics
- Resource Type:
- Courseware
-
e-journal
In this journal platform, you can find the articles which published under the open license. The journal including the disciplines:
Biomedical & Life Science
Business & Economics
Chemistry & Materials Science
Computer Science & Communication
Earth & Environmental Science
Engineering
Medicine & Healthcare
Physics & Mathematics
Social Science & Humanities
- Subjects:
- Health Sciences, Environmental Sciences, Physics, Economics, Chemistry, Computing, Mathematics and Statistics, and Biology
- Keywords:
- Science Periodicals Industrial management Computer science Physics Mathematics Life sciences Economics Technology Chemistry Social sciences Environmental sciences Engineering Materials science Medicine
- Resource Type:
- e-journal
-
e-journal
"SciDoc Publishers" is an Open Access publisher established with a sole motive to disseminate knowledge among the scientific community. The journal including the disciplines:
Aerospace Research
Health Science & Medicine
Behavioral Research & Psychology
Food Science
- Subjects:
- Health Sciences, Environmental Sciences, Medicine, Chemistry, Food Science, Biology, Physics, and Aeronautical and Aviation Engineering
- Keywords:
- Science Periodicals Medicine Technology
- Resource Type:
- e-journal
-
e-book
Relativity Lite is designed for courses like my 100-student General Astronomy sequence. Relativity Lite translates the mathematical equations conventional relativity texts rely upon into pictures that are readily understood and contain within them the mathematical essentials. This new book would provide the comprehensive coverage needed to understand, in sufficient depth, these three linked areas of our reality.
- Subjects:
- Physics
- Keywords:
- General relativity (Physics) Special relativity (Physics) Textbooks Astronomy
- Resource Type:
- e-book
-
Courseware
8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.
- Subjects:
- Physics
- Keywords:
- Quantum theory
- Resource Type:
- Courseware
-
Courseware
This is the first course in the undergraduate Quantum Physics sequence. It introduces the basic features of quantum mechanics. It covers the experimental basis of quantum physics, introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions. This presentation of 8.04 by Barton Zwiebach (2016) differs somewhat and complements nicely the presentation of Allan Adams (2013). Adams covers a larger set of ideas; Zwiebach tends to go deeper into a smaller set of ideas, offering a systematic and detailed treatment. Adams begins with the subtleties of superpostion, while Zwiebach discusses the surprises of interaction-free measurements. While both courses overlap over a sizable amount of standard material, Adams discussed applications to condensed matter physics, while Zwiebach focused on scattering and resonances. The different perspectives of the instructors make the problem sets in the two courses rather different.
- Subjects:
- Physics
- Keywords:
- Quantum theory
- Resource Type:
- Courseware
-
Courseware
6.453 Quantum Optical Communication is one of a collection of MIT classes that deals with aspects of an emerging field known as quantum information science. This course covers Quantum Optics, Single-Mode and Two-Mode Quantum Systems, Multi-Mode Quantum Systems, Nonlinear Optics, and Quantum System Theory.
- Subjects:
- Electronic and Information Engineering and Physics
- Keywords:
- Quantum optics Quantum theory Nonlinear optics
- Resource Type:
- Courseware
-
Courseware
Quantum Information Processing aims at harnessing quantum physics to conceive and build devices that could dramatically exceed the capabilities of today’s “classical” computation and communication systems. In this course, we will introduce the basic concepts of this rapidly developing field.
- Subjects:
- Physics
- Keywords:
- Quantum computing Quantum theory -- Data processing
- Resource Type:
- Courseware
-
Video
In this archival footage from BBC TV, celebrated physicist Richard Feynman explains what fire, magnets, rubber bands (and more) are like at the scale of the jiggling atoms they're made of. This accessible, enchanting conversation in physics reveals a teeming nano-world that's just plain fun to imagine.
- Subjects:
- Physics
- Keywords:
- Physics -- Popular works Atoms
- Resource Type:
- Video
-
Courseware
Vibrations and waves are everywhere. If you take any system and disturb it from a stable equilibrium, the resultant motion will be waves and vibrations. Think of a guitar string—pluck the string, and it vibrates. The sound waves generated make their way to our ears, and we hear the string’s sound. Our eyes see what’s happening because they receive the electromagnetic waves of the light reflected from the guitar string, so that we can recognize the beautiful sinusoidal waves on the string.
- Subjects:
- Physics
- Keywords:
- Waves Vibration
- Resource Type:
- Courseware
-
Others
In this animated activity, learners view the following physics concepts in action: force, friction, horsepower, work, power, inefficiency, resistance, inertia, and energy.
- Subjects:
- Physics
- Keywords:
- Hydraulics Motion
- Resource Type:
- Others
-
Courseware
This course will show you how to apply simple physics models to the motion of objects, UCI Physics 7C covers the following topics: force, energy, momentum, rotation, and gravity.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Mathematica and its applications to linear algebra, differential equations, and complex functions. Fourier series and Fourier transforms. Other topics in integral transforms.
- Subjects:
- Physics and Mathematics and Statistics
- Keywords:
- Physics Mathematical physics
- Resource Type:
- Courseware
-
Courseware
This is the third and final course of the Physics 3 series. The course focuses primarily on waves but the concepts of force and energy will continue to be important, as well. Specific topics include waves and sound, optics, quantum concepts, atomic and nuclear physics, and relativity.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Second part of the Basic Physics 3 series. This course covers topics such as: fluid mechanics, thermodynamics,electrostatics (including dc circuits), magnetism (including eletromagnetic induction). The course assumes a working knowledge of calculus and trigonometry.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Introduction to basic physics. This course will introduce the conceptual and mathematical framework for kinematics and Newtonian dynamics, and also to teach problem solving techniques that are used in Physics. Other topics include: vectors; motion, force, and energy.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Have you ever wondered if Superman could really fly? What was Spiderman's spidey sense? How did Wonder Woman's invisible jet work? What does it really mean for something to be a scientific "fact"? Explore how science works and what constitutes "good" science through case studies drawn from a wide spectrum of people's experience, for example superheros, movies, and real world issues such as global warming. The case studies will provide the change to act as science critics as the students develop a better appreciation for science and the scientific method.
- Subjects:
- Physics
- Keywords:
- Science Global warming Superheroes Science in popular culture
- Resource Type:
- Courseware
-
Courseware
An overview of the scientific quest to discover life elsewhere in the universe. Topics include the origin of life on Earth, Mars, extra-solar planets, interstellar travel, and extra-terrestrial intelligence.
- Subjects:
- Physics and Cosmology and Astronomy
- Keywords:
- Life on other planets
- Resource Type:
- Courseware
-
Courseware
Cook's Tour of the universe. Ancient world models. Evidence for universal expansion; the size and age of the universe and how it all began. The long-range future and how to decide the right model. Anthropic principle. Course may be offered online.
- Subjects:
- Physics and Cosmology and Astronomy
- Keywords:
- Cosmology
- Resource Type:
- Courseware
-
Video
The lecture commenced with a warm welcome and brief speaker introduction by Prof. CHEN Qingyan, Director of PAIR. Prof. Russell kickstarted his presentation by giving a brief overview of the historical development of photonic crystal fibre (PCF), highlighting how advancements in optical fibres, Bragg scattering, photonic bandgaps and drawing towers laid the foundation for PCF breakthroughs. Prof. Russell shared that he proposed in 1991 a glass fibre with a periodic array of microscopic hollow channels running along its length might guide light in novel ways, and many PCFs emerged from drawing towers at universities in subsequent years. Next, he elaborated on the advantages of PCF, explaining how it offers enhanced control over the propagation light, and how this property has enabled valuable applications. He shared his research in light-guiding PCF, hollow core PCF filled with gas, and twisted PCF, reviewing how some of the scientific discoveries made possible by PCF have evolved into real-world applications.
Event date: 05/11/2024
Speaker: Prof. Philip RUSSELL
Hosted by: PolyU Academy for Interdisciplinary Research
- Subjects:
- Physics
- Keywords:
- Optical fibers Optical communications Fiber optics
- Resource Type:
- Video
-
Video
More than one hundred years ago, Albert Einstein published his Theory of General Relativity (GR). One year later, Karl Schwarzschild solved the GR equations for a non-rotating, spherical mass distribution; if this mass is sufficiently compact, even light cannot escape from within the so-called event horizon, and there is a mass singularity at the center. The theoretical concept of a 'black hole' was born, and was refined in the next decades by work of Penrose, Wheeler, Kerr, Hawking and many others. First indirect evidence for the existence of such black holes in our Universe came from observations of compact X-ray binaries and distant luminous quasars. I will discuss the forty-year journey, which my colleagues and I have been undertaking to study the mass distribution in the Center of our Milky Way from ever more precise, long-term studies of the motions of gas and stars as test particles of the space time. These studies show the existence of a four million solar mass object, which must be a single massive black hole, beyond any reasonable doubt.
Event date: 09/02/2023
Speaker: Prof. Reinhard GENZEL
Hosted by: PolyU Academy for Interdisciplinary Research
- Subjects:
- Cosmology and Astronomy and Physics
- Keywords:
- Astrophysics Astronomy Deep space -- Milky Way Nobel Prize winners General relativity (Physics) Black holes (Astronomy)
- Resource Type:
- Video
-
Courseware
This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.
- Subjects:
- Physics
- Keywords:
- Optics Geometrical optics
- Resource Type:
- Courseware
-
Others
Online MRI & CT Sectional Anatomy (OMCSA K-anatomy) is probably one of the most user-friendly and convenient online interface for human anatomy atlas. Anatomies like brain, temporal bone/internal auditory meatus, nasopharynx, orbit, paranasal sinuses, cranial nerves, temporomandibular joint, neck, brachial plexus, spine, shoulder, arm, elbow, forearm, wrist, hand, finger, thumb, thorax/lung, coronary arteries, abdomen, pelvis, hip, thigh, knee, leg, ankle, foot, angiogram, etc. are included.
- Course related:
- HTI5701 Multiplanar Anatomy
- Subjects:
- Medical Imaging and Physics
- Keywords:
- Tomography Human anatomy Magnetic resonance imaging
- Resource Type:
- Others
-
Video
In this learning activity you'll examine Newton's Third Law: for every action, there is an equal but opposite reaction.
-
Video
In this learning activity you'll examine force, mass, and acceleration to understand this "Law of Acceleration."
- Subjects:
- Physics
- Keywords:
- Acceleration (Mechanics) Motion
- Resource Type:
- Video
-
Video
The learner views several animations to study Newton's First Law of Motion, also known as "The Law of Inertia."
- Subjects:
- Physics
- Keywords:
- Inertia (Mechanics)
- Resource Type:
- Video