Search Constraints
Number of results to display per page
Results for:
« Previous |
1 - 50 of 97
|
Next »
Search Results
-
e-book
Covers over 5,000 reports published by the National Academies Press for the National Academy of Sciences, National Academy of Engineering, Institute of Medicine and National Research Council in the US.
- Subjects:
- Physics, Mathematics and Statistics, and Chemistry
- Keywords:
- Physics Chemistry Mathematics
- Resource Type:
- e-book
-
Courseware
This first course in the physics curriculum introduces classical mechanics. Historically, a set of core concepts—space, time, mass, force, momentum, torque, and angular momentum—were introduced in classical mechanics in order to solve the most famous physics problem, the motion of the planets. The principles of mechanics successfully described many other phenomena encountered in the world. Conservation laws involving energy, momentum and angular momentum provided a second parallel approach to solving many of the same problems. In this course, we will investigate both approaches: Force and conservation laws. Our goal is to develop a conceptual understanding of the core concepts, a familiarity with the experimental verification of our theoretical laws, and an ability to apply the theoretical framework to describe and predict the motions of bodies.
- Subjects:
- Physics
- Keywords:
- Kinematics Torque Mass (Physics) Angular momentum Force energy Motion Mechanics
- Resource Type:
- Courseware
-
Courseware
This course discusses theoretical concepts and analysis of wave problems in science and engineering. Examples are chosen from elasticity, acoustics, geophysics, hydrodynamics, blood flow, nondestructive evaluation, and other applications.
- Subjects:
- Mechanical Engineering and Physics
- Keywords:
- Wave mechanics Wave-motion Theory of
- Resource Type:
- Courseware
-
Courseware
6.453 Quantum Optical Communication is one of a collection of MIT classes that deals with aspects of an emerging field known as quantum information science. This course covers Quantum Optics, Single-Mode and Two-Mode Quantum Systems, Multi-Mode Quantum Systems, Nonlinear Optics, and Quantum System Theory.
- Subjects:
- Electronic and Information Engineering and Physics
- Keywords:
- Quantum optics Quantum theory Nonlinear optics
- Resource Type:
- Courseware
-
Courseware
This is the first course in the undergraduate Quantum Physics sequence. It introduces the basic features of quantum mechanics. It covers the experimental basis of quantum physics, introduces wave mechanics, Schrödinger's equation in a single dimension, and Schrödinger's equation in three dimensions. This presentation of 8.04 by Barton Zwiebach (2016) differs somewhat and complements nicely the presentation of Allan Adams (2013). Adams covers a larger set of ideas; Zwiebach tends to go deeper into a smaller set of ideas, offering a systematic and detailed treatment. Adams begins with the subtleties of superpostion, while Zwiebach discusses the surprises of interaction-free measurements. While both courses overlap over a sizable amount of standard material, Adams discussed applications to condensed matter physics, while Zwiebach focused on scattering and resonances. The different perspectives of the instructors make the problem sets in the two courses rather different.
- Subjects:
- Physics
- Keywords:
- Quantum theory
- Resource Type:
- Courseware
-
Courseware
8.06 is the third course in the three-sequence physics undergraduate Quantum Mechanics curriculum. By the end of this course, you will be able to interpret and analyze a wide range of quantum mechanical systems using both exact analytic techniques and various approximation methods. This course will introduce some of the important model systems studied in contemporary physics, including two-dimensional electron systems, the fine structure of Hydrogen, lasers, and particle scattering.
- Subjects:
- Physics
- Keywords:
- Quantum theory
- Resource Type:
- Courseware
-
Courseware
An introduction to Einstein’s theory of gravitation. Tensor analysis, Einstein’s field equations, astronomical tests of Einstein’s theory, gravitational waves.
- Subjects:
- Physics
- Keywords:
- Gravitation General relativity (Physics) Einstein Albert 1879-1955
- Resource Type:
- Courseware
-
Courseware
Cook's Tour of the universe. Ancient world models. Evidence for universal expansion; the size and age of the universe and how it all began. The long-range future and how to decide the right model. Anthropic principle. Course may be offered online.
- Subjects:
- Physics and Cosmology and Astronomy
- Keywords:
- Cosmology
- Resource Type:
- Courseware
-
Courseware
An overview of the scientific quest to discover life elsewhere in the universe. Topics include the origin of life on Earth, Mars, extra-solar planets, interstellar travel, and extra-terrestrial intelligence.
- Subjects:
- Physics and Cosmology and Astronomy
- Keywords:
- Life on other planets
- Resource Type:
- Courseware
-
Courseware
Have you ever wondered if Superman could really fly? What was Spiderman's spidey sense? How did Wonder Woman's invisible jet work? What does it really mean for something to be a scientific "fact"? Explore how science works and what constitutes "good" science through case studies drawn from a wide spectrum of people's experience, for example superheros, movies, and real world issues such as global warming. The case studies will provide the change to act as science critics as the students develop a better appreciation for science and the scientific method.
- Subjects:
- Physics
- Keywords:
- Science Global warming Superheroes Science in popular culture
- Resource Type:
- Courseware
-
Courseware
Introduction to basic physics. This course will introduce the conceptual and mathematical framework for kinematics and Newtonian dynamics, and also to teach problem solving techniques that are used in Physics. Other topics include: vectors; motion, force, and energy.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Second part of the Basic Physics 3 series. This course covers topics such as: fluid mechanics, thermodynamics,electrostatics (including dc circuits), magnetism (including eletromagnetic induction). The course assumes a working knowledge of calculus and trigonometry.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
This is the third and final course of the Physics 3 series. The course focuses primarily on waves but the concepts of force and energy will continue to be important, as well. Specific topics include waves and sound, optics, quantum concepts, atomic and nuclear physics, and relativity.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Mathematica and its applications to linear algebra, differential equations, and complex functions. Fourier series and Fourier transforms. Other topics in integral transforms.
- Subjects:
- Physics and Mathematics and Statistics
- Keywords:
- Mathematical physics Physics
- Resource Type:
- Courseware
-
Courseware
This course will show you how to apply simple physics models to the motion of objects, UCI Physics 7C covers the following topics: force, energy, momentum, rotation, and gravity.
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
Thermal conductivity, the Wiedemann-Franz law and the collision integral for electron-electron scattering. This course is about the electronic properties of materials and contains lectures about scattering, transport in metals, phonons and superconductivity.
- Subjects:
- Physics
- Keywords:
- Materials -- Electric properties Thermoelectricity Superconductivity
- Resource Type:
- Courseware
-
Courseware
Mesoscopic physics is the area of Solid State physics that covers the transition regime between macroscopic objects and the microscopic, atomic world.The main goal of the course is to introduce the physical concepts underlying the phenomena in this field.
- Subjects:
- Physics
- Keywords:
- Mesoscopic phenomena (Physics)
- Resource Type:
- Courseware
-
Courseware
Quantum Information Processing aims at harnessing quantum physics to conceive and build devices that could dramatically exceed the capabilities of today’s “classical” computation and communication systems. In this course, we will introduce the basic concepts of this rapidly developing field.
- Subjects:
- Physics
- Keywords:
- Quantum computing Quantum theory -- Data processing
- Resource Type:
- Courseware
-
Courseware
In this nuclear energy course, we will tackle provocative questions such as: -Is nuclear energy a good substitute for fossil fuels to reduce our CO2 emission or not? -Can nuclear reactors operate safely without any harm to the public and environment? -How much nuclear waste is produced and how long does it need to be stored safely? -How can we make nuclear energy clean and more sustainable? -How much are nuclear energy costs? You will learn the physics behind nuclear science, how to gain energy from nuclear fission, how nuclear reactors operate safely, and the life cycle of nuclear fuel: from mining to disposal. In the last part of the course, we will focus on what matters most in the public debate: the economic and social impact of nuclear energy but also the future of energy systems. Practically, we will: -Teach you about nuclear science and technology (radiation and radioactivity, nuclear reactions, nuclear reactors and fuel cycle, economics of nuclear energy, and the sociality aspects) -Show you short videos about the theory and practical implementation of nuclear energy -Stimulate discussion and debate about nuclear energy -Ask you to formulate your own opinion about nuclear energy and its role in society The GENTLE consortium has sponsored and prepared this course. GENTLE is focused on maintaining the current high level of nuclear safety, and developing a highly skilled and well informed nuclear workforce, following the conclusion of the Council of the EU that it “it is essential to maintain in the European Union a high level of training in the nuclear field” to deal with reactor fleet safely, decommission obsolete plants, be involved in new builds where policy dictates, and deal with the legacy and future radioactive wastes.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Nuclear engineering Nuclear physics Nuclear energy
- Resource Type:
- Courseware
-
Courseware
In electrical engineering, solid-state materials and the properties play an essential role. A thorough understanding of the physics of metals, insulators and semiconductor materials is essential for designing new electronic devices and circuits. After short introduction of the IC fabrication process, the course starts with the crystallography. This will be followed by the basic principle of the quantum mechanics, the sold-state physics, band-structure and the relation with electrical properties of the solid-state materials. When the material physics has been throughly understood, the physics of the semiconductor device follows quite naturally and can be understood quickly and efficiently.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Semiconductors Solid state physics Matter -- Properties
- Resource Type:
- Courseware
-
Courseware
This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.
- Subjects:
- Physics
- Keywords:
- Optics Geometrical optics
- Resource Type:
- Courseware
-
Courseware
This course provides an introduction to continuum mechanics and material modelling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modelling and design of a large range of engineering materials.
- Subjects:
- Physics
- Keywords:
- Continuum mechanics Solid state physics Mechanics
- Resource Type:
- Courseware
-
Courseware
Vibrations and waves are everywhere. If you take any system and disturb it from a stable equilibrium, the resultant motion will be waves and vibrations. Think of a guitar string—pluck the string, and it vibrates. The sound waves generated make their way to our ears, and we hear the string’s sound. Our eyes see what’s happening because they receive the electromagnetic waves of the light reflected from the guitar string, so that we can recognize the beautiful sinusoidal waves on the string.
- Subjects:
- Physics
- Keywords:
- Waves Vibration
- Resource Type:
- Courseware
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
- Subjects:
- Physics
- Keywords:
- Thermodynamics Physics Magnetism Electricity
- Resource Type:
- e-book
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
-
Courseware
The BIIG problem-solving method is unique in that it forces us to concentrate on decoding a real-world word problem completely into meaningful parts and aids us in finding and applying the right formula to easily arrive at the correct solution. As desired, it places less emphasis on the memorization of factual detail and more emphasis on the understanding of concepts. Evidently, this method is beneficial in many ways as it aids students in honing skills in critical thinking, logical approach and attention to detail. As a method for organizing information it helps students avoid errors and sets them on a path to succeed. As long as the numbers are “buddied up” with their units, “identified” by the appropriate variables, “isolated” within the context, and the answer is presented “gourmet”, or explained in terms of the original question, finding a solution to any complex problem will become seamless, understandable and enjoyable. This innovation in science education fosters a passion for learning and serves as a foundation for a new paradigm for problem-solving in any discipline of science worldwide.
- Subjects:
- Physics
- Keywords:
- Problem solving Physics
- Resource Type:
- Courseware
-
Courseware
This course is intended for students enrolling for BSc with Education and BEd degrees. Solid state physics forms the backborn of physics. The module has four units: Introduction to solid state physics; Crystal defects and mechanical properties ; Thermal and electrical properties; and Band theory & Optical properties.In the first unit/activity i.e. introduction to solid state physics. The student is expected to explain the atomic structure, describe the various atomic bonds such as ionic bonds and covalent bonds. The learning will also require students to distinguish between crystalline and amorphous solids; polycrystalline and amorphous solids and to explain the production and use of X-ray diffraction. In the second unit i.e. crystal defects and mechanical properties, the learning includes, differentiating between the different types of crystal defects: the point defects (vacancy, interstitials, and substitutional) and dislocations (screw and edge). Here, the student learns that point defects are very localised and are of atomic size, while dislocation is a disorder which extend beyond the volume of one or two atoms. The effects of the defects on mechanical, and electrical properties of these defects are also part of the learning that will take place. In unit three the learning outcomes include definitions of heat capacity, and explanations of variation of heat capacity with temperature based on the classical, Einstein and Debye models. The students will be required to use the free electron theory to explain high thermal and electrical conductivities of metals and also be able to derive and apply the Wiedermann-Frantz law. Finally, in activity four, the expected learning should enable the students to use the band theory to explain the differences between conductors, semiconductors and insulators; explain the differences between intrinsic and extrinsic semiconductors in relation to the role of doping. At the end of it all, the students use the concepts of the interaction of electromagnetic waves (light) with materials to explain optical absorption, reflectivity and transmissivity.
- Subjects:
- Physics
- Keywords:
- Solid state physics
- Resource Type:
- Courseware
-
Video
This channel contains the complete 8.01x (Physics I: Classical Mechanics), 8.02x (Physics II: Electricity and Magnetism) and 8.03 (Physics III: Vibrations and Waves) lectures as presented by Walter Lewin in the fall of 1999, spring of 2002 and fall of 2004. The 8.01x and 8.02x edX lectures are high resolution (480p) versions of the more commonly seen OCW versions. Some edits were also made by Lewin. 8.03 is the OCW version, also in a 480p resolution. Links to lecture notes, assignments/solutions and exams/solutions are added. Playlists with Help Sessions for 8.01x, 8.02x and 8.03 are also available. They are "mini lectures". The problems discussed in these videos should be apparent after watching the first few minutes. Other playlists show Lewin in various appearances and his Bi-Weekly Physics problems/solutions and several excellent lectures by Feynman and others.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Waves Vibration Magnetism Mechanics Electricity Physics
- Resource Type:
- Video
-
e-book
This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics B. Algebra and trig are used, and there are optional calculus-based sections.
-
e-book
This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems. OpenStax College has compiled many resources for faculty and students, from faculty-only content to interactive homework and study guides.
-
e-book
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th – 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering. This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics. This second edition adds discussion of the use of variational principles applied to the following topics: Systems subject to initial boundary conditions The hierarchy of the related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries Non-conservative systems. Variable-mass systems. The General Theory of Relativity. The first edition of this book can be downloaded at the publisher link.
-
e-book
In Mechanics and Relativity, the reader is taken on a tour through time and space. Starting from the basic axioms formulated by Newton and Einstein, the theory of motion at both the everyday and the highly relativistic level is developed without the need of prior knowledge. The relevant mathematics is provided in an appendix. The text contains various worked examples and a large number of original problems to help the reader develop an intuition for the physics. Applications covered in the book span a wide range of physical phenomena, including rocket motion, spinning tennis rackets and high-energy particle collisions.
- Subjects:
- Physics
- Keywords:
- Relativity (Physics) Textbooks Mechanics
- Resource Type:
- e-book
-
e-book
Body Physics sticks to the basic functioning of the human body, from motion to metabolism, as a common theme through which fundamental physics topics are introduced. Related practice, reinforcement and Lab activities are included. See the front matter for more details. Additional supplementary material, activities, and information can be found at: https://openoregon.pressbooks.pub/bpsupmat/
-
e-book
Relativity Lite is designed for courses like my 100-student General Astronomy sequence. Relativity Lite translates the mathematical equations conventional relativity texts rely upon into pictures that are readily understood and contain within them the mathematical essentials. This new book would provide the comprehensive coverage needed to understand, in sufficient depth, these three linked areas of our reality.
- Subjects:
- Physics
- Keywords:
- General relativity (Physics) Special relativity (Physics) Textbooks Astronomy
- Resource Type:
- e-book
-
e-book
This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics (including one chapter on mechanical waves, but excluding fluids), plus a brief introduction to thermodynamics. The presentation owes much to Mazur’s The Principles and Practice of Physics: conservation laws, momentum and energy, are introduced before forces, and one-dimensional setups are thoroughly explored before two-dimensional systems are considered. It contains both problems and worked-out examples.
-
e-book
This book was developed at Simon Fraser University for an upper-level physics course. Along with a careful exposition of electricity and magnetism, it devotes a chapter to ferromagnets. According to the course description, the topics covered were “electromagnetics, magnetostatics, waves, transmission lines, wave guides,antennas, and radiating systems.”
-
e-book
This lab manual provides students with the theory, practical applications, objectives, and laboratory procedure of ten experiments. The manual also includes educational videos showing how student should run each experiment and a workbook for organizing data collected in the lab and preparing result tables and charts.
- Subjects:
- Laboratory Techniques and Safety and Physics
- Keywords:
- Fluid mechanics Fluid dynamics Laboratory manuals Textbooks Hydraulic machinery
- Resource Type:
- e-book
-
e-book
Electromagnetics Volume 1 by Steven W. Ellingson is a 238-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current. Additional ResourcesProblem sets and the corresponding solution manual are also available.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Electromagnetic theory Electromagnetism Textbooks
- Resource Type:
- e-book
-
e-book
Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas. To express your interest in this book or series, please visit http://bit.ly/vtpublishing-updates Additional resources Problem sets and the corresponding solution manuals; Slides of figures used in and created for the book; LaTeX sourcefiles; Errata for Volume 2; Collaborator portal for the Electromagnetics series; Faculty listserv for the Electromagnetics series. An accessible version will be available in January 2020. The Open Electromagnetics Project Led by Steven W. Ellingson at Virginia Tech, the goal of the Open Electromagnetics Project is to create no-cost openly-licensed content for courses in engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources. Books in this Series Electromagnetics, Volume 1 https://doi.org/10.21061/electromagnetics-vol-1 Electromagnetics, Volume 2 https://doi.org/10.21061/electromagnetics-vol-2
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Electromagnetic theory Electromagnetism Textbooks
- Resource Type:
- e-book
-
e-book
Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.
-
e-book
Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.
-
Video
Section III Wave Motion 3.1.2 Properties of Waves Diffraction
- Course related:
- AP10006 Physics II
- Subjects:
- Physics
- Keywords:
- Physical sciences Sound-waves Diffraction
- Resource Type:
- Video
-
Courseware
This online course covers the topic of density and pressure,buoyant force and archimedes' principle, and fluid dynamics.
- Course related:
- AAE3001 Fundamentals of Aerodynamics
- Subjects:
- Aeronautical and Aviation Engineering and Physics
- Keywords:
- Fluid dynamics
- Resource Type:
- Courseware
-
Others
Online MRI & CT Sectional Anatomy (OMCSA K-anatomy) is probably one of the most user-friendly and convenient online interface for human anatomy atlas. Anatomies like brain, temporal bone/internal auditory meatus, nasopharynx, orbit, paranasal sinuses, cranial nerves, temporomandibular joint, neck, brachial plexus, spine, shoulder, arm, elbow, forearm, wrist, hand, finger, thumb, thorax/lung, coronary arteries, abdomen, pelvis, hip, thigh, knee, leg, ankle, foot, angiogram, etc. are included.
- Course related:
- HTI5701 Multiplanar Anatomy
- Subjects:
- Medical Imaging and Physics
- Keywords:
- Tomography Human anatomy Magnetic resonance imaging
- Resource Type:
- Others
-
Video
COMSOL Multiphysics ®是一款通用的工程模擬軟體平臺,其核心產品可單獨運行,也可與任意組合的附加模組結合使用,以模擬電磁、結構力學、聲學、流體、熱傳、化工等各領域的產品設計和過程。 各附加模組和LiveLink™產品可以無縫地整合到軟體環境中去,這意味著無論您從事哪一領域的建模工作,都可以遵循同樣的建模流程。 根據您的模擬需求,擴展產品可自由組合使用。
- Course related:
- EE4006 Individual Project
- Subjects:
- Physics
- Keywords:
- Engineering -- Data processing Physics -- Computer simulation Engineering -- Computer simulation COMSOL Multiphysics Physics -- Data processing
- Resource Type:
- Video
-
Others
Physics is the study of matter, motion, energy, and force. Here, you can browse videos, articles, and exercises by topic. We keep the library up-to-date, so you may find new or improved material here over time.
- Course related:
- AP10001 Introduction to Physics
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Others
-
Video
How MRI Works: Part 1 - NMR Basics. First in a series on how MRI works. This video deals with NMR basis such as spin, precession, T1 and T2, TR and TE, and Boltzmann Magnetization. 0:00 - Introduction 1:22 - Nuclear Magnetic Resonance 4:10 - Inside the MRI Scanner 7:50 - The Proton, Spin, and Precession 11:34 - Signal Detection and the Larmor Equation 14:10 - Flip Angle 15:30 - Ensemble Magnetic Moment 16:34 - Free Induction Decay and T2 18:43 - T2 Weighting and TE 21:46 - Spin Density Imaging 24:18 - T1 Relaxation 25:45 - T1 Weighting and TR 27:01 - The NMR Experiment and Rotating Frame 28:57 - Excitation: the B1 field 30:14 - Measuring Longitudinal Magnetization 31:34 - The MR Contrast Equation 34:42 - Boltzmann Magnetization and Polarization 40:09 - Hyperpolarization 41:42 - Outro
- Course related:
- BME42113 Biomedical Imaging
- Subjects:
- Medical Imaging and Physics
- Keywords:
- Magnetic resonance imaging
- Resource Type:
- Video
-
Video
In 46 episodes, Dr. Shini Somara will help you find your place in the world -- literally! -- with physics. This course is based on introductory college-level material and the 2016 AP Physics I and II curriculum. By the end of this course, you will be able to: *Identify the fundamental forces describing the world and the core branches of physics *Pose, refine, and evaluate scientific questions *Connect phenomena and models across spatial and temporal scales *Use representations and models to communicate scientific phenomena and solve scientific problems *Apply mathematical equations that describe natural phenomena
-
e-book
"This is a calculus-based book meant for the first semester of a first year survey course taken by engineering and physical science majors. It has a traditional order of topics whereby force is discussed before energy. It is divided into 17 chapters that cover a review of high school physics, scaling and estimation, vectors, velocity, acceleration, forces, circular motion, gravity, conservation of energy, work, conservation of momentum and angular momentum, vibrations, and resonance. A treatment of relativity is interspersed with the Newtonian mechanics, in optional sections"--BC Campus website.