Search Constraints
Number of results to display per page
Results for:
Language
English
Remove constraint Language: English
« Previous 
1  10 of 742

Next »
Search Results

Video
Water shortage is one of the biggest challenges that humanity faces. Novel technologies to tackle the challenge of water scarcity are urgently needed. However, all the existing studies are based on bare fibers with diameter in the order of mm. This talk introduces a novel fog collection technology using microfibers fabricated by nearfield electrospinning. The collection efficiency reaches a record high level. Systematic investigation reveals that the waterdrops are “visible” to fog droplets in the incoming air flow because of the relatively small size of the microfibers. Thus, the large waterdrops deflect the fogcarrying airflow to the satellite small waterdrops, which effectively intercept the fog droplets.
Event Date: 12/10/2023
Speaker: Prof. TAN Zhongchao (Founding Chair Professor, Vice Provost and Dean of Academic Affairs of the Eastern Institute of Technology in Ningbo, China)
Hosted by: PolyU Academy for Interdisciplinary Research
 Subjects:
 Environmental Sciences and Mechanical Engineering
 Keywords:
 Fog Hydrology Water harvesting Watersupply
 Resource Type:
 Video

Video
In the presentation, Prof. Chan shared Singapore’s longterm energy plan and research focus, as well as a few major initiatives on hydrogen application. He then introduced turquoise hydrogen and the catalytic decomposition of methane for hydrogen production, followed by an overview of the research activities on hydrogen and fuel cells at NTU over the last 30 years.
Event Date: 13/6/2023
Speaker: Prof. CHAN Siew Hwa (Nanyang Technological University)
Hosted by: PolyU Academy for Interdisciplinary Research
 Subjects:
 Electrical Engineering
 Keywords:
 Clean energy Hydrogen as fuel
 Resource Type:
 Video

Video
In this lecture I consider the fundamental, challenging and largely unsolved problem of deriving rigorously the most popular kinetic equations, starting from the laws governing the dynamics of microscopic systems. I plan to present classical and recent results, discussing also some present perspectives.
Event date: 30/3/2023
Speaker: Prof. Mario Pulvirenti (University of Roma La Sapienza)
Hosted by: Department of Applied Mathematics
 Subjects:
 Mathematics and Statistics
 Keywords:
 Mathematical models Kinetic theory of gases  Mathematical models
 Resource Type:
 Video

Video
We investigate reversal and recirculation for the stationary Prandtl equations. Reversal describes the solution after the Goldstein singularity, and is characterized by regions in which u > O and u < 0. The classical point of view of regarding the Prandtl equations as an evolution equation in x completely breaks down since u changes sign. Instead, we view the problem as a quasilinear, mixedtype, freeboundary problem. This is a joint work with Sameer Iyer.
Event date: 14/3/2023
Speaker: Prof. Nader Masmoudi (New York University)
Hosted by: Department of Applied Mathematics
 Subjects:
 Mathematics and Statistics
 Keywords:
 Fluid dynamics  Mathematical models
 Resource Type:
 Video

Video
In the context of hyperbolic systems of balance laws with dissipative source manifesting relaxation, recent pr"Ogress will be reported in the program of passing to the limit, in 1he BV setting, as the relaxation lime tends to zero.
Event date: 16/2/2023
Speaker: Prof. Constantine Dafermos (Brown University)
Hosted by: Department of Applied Mathematics
 Subjects:
 Mathematics and Statistics
 Keywords:
 Equilibrium  Mathematical models Relaxation Differential equations Hyperbolic
 Resource Type:
 Video

Video
Models arising in biology are often written in terms of Ordinary Differential Equations. The celebrated paper of KermackMcKendrick (19271, founding mathematical epidemiology, showed the necessity to include parameters in order to describe the state of the individuals, as time elapsed after infection. During the 70s, many mathematical studies were developed when equations are structured by age, size, more generally a physiological trait. The renewal, growthfragmentation are the more standard equations. The talk will present structured equations, show that a universal generalized relative entropy structure is available in the linear case, which imposes relaxation to a steady state under nondegeneracy conditions. In the nonlinear cases, it might be that periodic solutions occur, which can be interpreted in biological terms, e.g., as network activity in the neuroscience. When the equations are conservation laws, a variant of the MongeKantorovich distance (called FortetMourier distance) also gives a general nonexpansion property of solutions.
Event date: 19/1/2023
Speaker: Prof. Benoît Perthame (Sorbonne University)
Hosted by: Department of Applied Mathematics
 Subjects:
 Biology and Mathematics and Statistics
 Keywords:
 Biomathematics Equations
 Resource Type:
 Video

Video
Universities conduct research for three reasons: to educate students, to contribute to society, and to understand the world. While society often holds a view of the scholar as a solitary and singular genius, in reality scholars today participate in a highly collaborative, worldwide search for shared understandings that stand the test of time and the scrutiny of others. The problems in the 21st century often demand effort by teams of researchers with resources at scale: laboratories and equipment, compute resources, and expert staffing. Working with faculty, students, and other stakeholders to identify the greatest opportunities and the resources needed to address them is both a privilege and a challenge for modern academic administrators. In this talk, I will share three examples: fostering collaborative proposalwriting; planning for shared capabilities in experimental facilities, data, and computation; and transforming academic structures.
Even date: 12/4/2023
Speaker: Prof. Kathryn Ann Moler
Hosted by: PolyU Academy for Interdisciplinary Research
 Subjects:
 Statistics and Research Methods
 Keywords:
 Research Science
 Resource Type:
 Video

Video
More than one hundred years ago, Albert Einstein published his Theory of General Relativity (GR). One year later, Karl Schwarzschild solved the GR equations for a nonrotating, spherical mass distribution; if this mass is sufficiently compact, even light cannot escape from within the socalled event horizon, and there is a mass singularity at the center. The theoretical concept of a 'black hole' was born, and was refined in the next decades by work of Penrose, Wheeler, Kerr, Hawking and many others. First indirect evidence for the existence of such black holes in our Universe came from observations of compact Xray binaries and distant luminous quasars. I will discuss the fortyyear journey, which my colleagues and I have been undertaking to study the mass distribution in the Center of our Milky Way from ever more precise, longterm studies of the motions of gas and stars as test particles of the space time. These studies show the existence of a four million solar mass object, which must be a single massive black hole, beyond any reasonable doubt.
Even date: 9/2/2023
Speaker: Prof. Reinhard GENZEL
Hosted by: PolyU Academy for Interdisciplinary Research
 Subjects:
 Physics and Cosmology and Astronomy
 Keywords:
 Nobel Prize winners Astrophysics Astronomy Deep space  Milky Way Black holes (Astronomy) General relativity (Physics)
 Resource Type:
 Video

Courseware
This course provides a thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis is placed on problem solving and quantitative reasoning. This course covers Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves.
 Course related:
 AP10005 Physics I
 Subjects:
 Physics
 Keywords:
 Physics
 Resource Type:
 Courseware

Video
In this lesson, we'll be looking at the cell cycle. This is the lifespan of a eukaryotic somatic cell. A somatic cell is any cell in the body of an organism, except for sex cells such as sperm and egg cells. The cell cycle describes the sequence of cell growth and division. A cell spends most of its life a state called interphase. Interphase has three phases, the G1, S, and G2 phases. Interphase is followed by cell division, which has one phase, the M phase. Together these four phases make up the entire cell cycle. G1 of interphase is sometimes called growth 1 or gap phase 1. In G1, a cell is busy growing and carrying out whatever function it's supposed to do. Note that some cells, such as muscle and nerve cells, exit the cell cycle after G1 because they do not divide again. A cell enters the S phase after it grows to the point where it's no longer able to function well and needs to divide. The S stands for synthesis, which means to make, because a copy of DNA is being made during this phase. Once DNA replication is complete, the cell enters the shortest and the last part of interphase called G2, also known as growth 2 or gap phase 2. Right now, it's enough to know that further preparations for cell division take place in the G2 phase. Now that interphase is over, the cell is ready for cell division, which happens in the M phase. The M phase has two events. The main one is mitosis, which is division of the cell's nucleus, followed by cytokinesis, a division of the cytoplasm. So, at the end of M phase, you have two daughter cells identical to each other and identical to the original cell. Let's review. The cell cycle describes the life cycle of an individual cell. It has four phases, three in interphase and one for cell division. Most cell growth and function happen during G1. The cell enters the S phase when it needs to divide. In this phase the cell replicates its DNA. Replication just means the cell makes a copy of its DNA. In G2, the cell undergoes further preparations for cell division. Finally, we have cell division in the M phase. The M phase consists of mitosis, which is nuclear division, and cytokinesis, or division of the cytoplasm. We'll explore the details of mitosis and cytokinesis separately
 Subjects:
 Biology
 Keywords:
 Cell cycle
 Resource Type:
 Video