Search Constraints
Number of results to display per page
Results for:
Keywords
Renewable energy sources
Remove constraint Keywords: Renewable energy sources
1 - 8 of 8
Search Results
-
MOOC
Humanity faces an immense challenge: providing abundant energy to everyone without wrecking the planet. If we want a high-energy future while protecting the natural world for our children, we must consider the environmental consequences of energy production and use. But money matters too: energy solutions that ignore economic costs are not realistic, particularly in a world where billions of people currently can’t afford access to basic energy services. How can we proceed? Energy Within Environmental Constraints won’t give you the answer. Instead, we will teach you how to ask the right questions and estimate the consequences of different choices. This course is rich in details of real devices and light on theory. You won’t find any electrodynamics here, but you will find enough about modern commercial solar panels to estimate if they would be profitable to install in a given location. We emphasizes costs: the cascade of capital and operating costs from energy extraction all the way through end uses. We also emphasize quantitative comparisons and tradeoffs: how much more expensive is electricity from solar panels than from coal plants, and how much pollution does it prevent? Is solar power as cost-effective an environmental investment as nuclear power or energy efficiency? And how do we include considerations other than cost? This course is intended for a diverse audience. Whether you are a student, an activist, a policymaker, a business owner, or a concerned citizen, this course will help you start to think carefully about our current energy system and how we can improve its environmental performance.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Environmental protection Environmental management Renewable energy sources Power resources
- Resource Type:
- MOOC
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
MOOC
This course provides the tools needed to build a low-carbon power sector around the world. By diving into the perspective of different players in the power sector - from investors through to utilities, regulators and project developers - you will be able to choose the right strategies, policies and other levers needed to incentivise a cleaner power mix in your own context. This course explores the mix of approaches that can create a pro-renewables environment. It explores this from a policy, regulatory and supply-chain perspective and examines the incentives and rules available. Key policies are brought to life through case studies, learning from both success and failure. Key messages of the course include: - Ambitions for renewable electricity must be grounded in technical and financial feasibility - Pro-renewables environments recognise the needs of energy supply chain actors (e.g. project developers, utilities, regulators, electricity customers) and balances pricing, fiscal and financial and wider policies to incentivise and drive deployment - There are multiple ways to encourage deployment of renewables across different scales – these have strengths and weaknesses and must balance rate of deployment, affordability and efficiency of generation - Incentives and rules are a package and can be aligned to deliver affordable, efficient renewable electricity - several real-world examples demonstrate this - Different countries have succeeded and failed in creating pro-renewables environments – demonstrating that while lessons can be used from these experiences, there is no single route to success and the environment must be bespoke to the circumstances of the country. This course should help decision makers across the electricity supply chain, in both the public and private sector, understand what mix of incentives is ideal from their perspective.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Environmental Policy and Planning
- Keywords:
- Electric power distribution -- Environmental aspects Renewable energy sources
- Resource Type:
- MOOC
-
Courseware
Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces. You will familiarize yourself with the advantages and challenges of DC microgrids (which are still in an early stage). You will have the opportunity to master the topic of microgrids through an exercise in which you will evaluate selected pilot sites where microgrids were deployed. The evaluation will take the form of a simulation assignment and include a peer review of the results.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic power systems Microgrids (Smart power grids)
- Resource Type:
- Courseware
-
Courseware
Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency. Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques. The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.
- Subjects:
- Building Services Engineering, Chemistry, and Environmental Engineering
- Keywords:
- Storage batteries Renewable energy sources Hydrogen as fuel Energy storage Hydrogen -- Storage
- Resource Type:
- Courseware
-
Video
What are solar cells, and how do they work? Find out more about solar power - and learn how this renewable resource harnesses the power of the sun into usable energy.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic power generation
- Resource Type:
- Video
-
Video
The Earth intercepts a lot of solar power: 173,000 terawatts. That’s 10,000 times more power than the planet’s population uses. So is it possible that one day the world could be completely reliant on solar energy? Richard Komp examines how solar panels convert solar energy to electrical energy.
- Subjects:
- Building Services Engineering and Environmental Engineering
- Keywords:
- Renewable energy sources Solar energy Photovoltaic power generation
- Resource Type:
- Video
-
Courseware
This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Energy consumption -- Environmental aspects Renewable energy sources Sustainable development
- Resource Type:
- Courseware