Search Constraints
Number of results to display per page
Results for:
Search Results
-
MOOC
Humanity faces an immense challenge: providing abundant energy to everyone without wrecking the planet. If we want a high-energy future while protecting the natural world for our children, we must consider the environmental consequences of energy production and use. But money matters too: energy solutions that ignore economic costs are not realistic, particularly in a world where billions of people currently can’t afford access to basic energy services. How can we proceed? Energy Within Environmental Constraints won’t give you the answer. Instead, we will teach you how to ask the right questions and estimate the consequences of different choices. This course is rich in details of real devices and light on theory. You won’t find any electrodynamics here, but you will find enough about modern commercial solar panels to estimate if they would be profitable to install in a given location. We emphasizes costs: the cascade of capital and operating costs from energy extraction all the way through end uses. We also emphasize quantitative comparisons and tradeoffs: how much more expensive is electricity from solar panels than from coal plants, and how much pollution does it prevent? Is solar power as cost-effective an environmental investment as nuclear power or energy efficiency? And how do we include considerations other than cost? This course is intended for a diverse audience. Whether you are a student, an activist, a policymaker, a business owner, or a concerned citizen, this course will help you start to think carefully about our current energy system and how we can improve its environmental performance.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Environmental protection Environmental management Renewable energy sources Power resources
- Resource Type:
- MOOC
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
MOOC
This course provides the tools needed to build a low-carbon power sector around the world. By diving into the perspective of different players in the power sector - from investors through to utilities, regulators and project developers - you will be able to choose the right strategies, policies and other levers needed to incentivise a cleaner power mix in your own context. This course explores the mix of approaches that can create a pro-renewables environment. It explores this from a policy, regulatory and supply-chain perspective and examines the incentives and rules available. Key policies are brought to life through case studies, learning from both success and failure. Key messages of the course include: - Ambitions for renewable electricity must be grounded in technical and financial feasibility - Pro-renewables environments recognise the needs of energy supply chain actors (e.g. project developers, utilities, regulators, electricity customers) and balances pricing, fiscal and financial and wider policies to incentivise and drive deployment - There are multiple ways to encourage deployment of renewables across different scales – these have strengths and weaknesses and must balance rate of deployment, affordability and efficiency of generation - Incentives and rules are a package and can be aligned to deliver affordable, efficient renewable electricity - several real-world examples demonstrate this - Different countries have succeeded and failed in creating pro-renewables environments – demonstrating that while lessons can be used from these experiences, there is no single route to success and the environment must be bespoke to the circumstances of the country. This course should help decision makers across the electricity supply chain, in both the public and private sector, understand what mix of incentives is ideal from their perspective.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Environmental Policy and Planning
- Keywords:
- Electric power distribution -- Environmental aspects Renewable energy sources
- Resource Type:
- MOOC
-
Courseware
If you’re interested in the concept of building with nature, then this is the engineering course for you. This course explores the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructural designs. You will learn the Building with Nature ecosystem-based design concept and its applications in water and coastal systems. During the course, you will be presented with a range of case studies to deepen your knowledge of ecological and engineering principles. You’ll learn from leading Dutch engineers and environmental scientists who see the Building with Nature integrated design approach as fundamental to a new generation of engineers and ecologists. Join us in exploring the interface between hydraulic engineering, nature and society.
- Subjects:
- Building Services Engineering and Hydraulic Engineering
- Keywords:
- Sustainable development Hydraulic engineering Water resources development -- Environmental aspects
- Resource Type:
- Courseware
-
MOOC
In the past few decades, China's cities have experienced a period of rapid development. Great changes have taken place in both urban space and urban life. With the booming of information and communications technology (ICT), ‘Big data’ such as mobile phone signaling, public transportation smart card records and ‘open data’ from commercial websites and government websites jointly promote the formation of the ‘new data environment’, thus providing a novel perspective for a better understanding of what changes have happened or are happening in China’s cities. This course combines both the new data generated for urban analysis and its research applications. The content ranges from big data acquisition, analysis, visualization and applications in the context of China’s urbanization and its city planning, to urban modeling methods and typical models, as well as the emerging trend and potential revolution of big data in urban planning. We have categorized the overall content of this online course into five sections, namely, overview, data, data processing, application, and perspective. The section of overview introduces cities in transition and describe the changing of urban space and urban life in China. The second section lists some commonly used open data and big data in the ‘new data environment’. Then, methods for data acquisition, cleaning and analysis are illustrated in data processing section. To better explain the data analysis method, the fourth part introduces several Chinese research cases to illustrate the application of these methods in urban research. Last but not least, the last section is the most future-oriented one, which is composed of some methodologies and proposals such as Data Augmented Design (DAD) and Big Model. This course, which shares experiences on big data analysis and its research application, will suit those concerning contemporary urbanizing China and its urban planning in the context of information and communication technologies.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- China Cities towns -- Data processing City planning Big data
- Resource Type:
- MOOC
-
Courseware
Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces. You will familiarize yourself with the advantages and challenges of DC microgrids (which are still in an early stage). You will have the opportunity to master the topic of microgrids through an exercise in which you will evaluate selected pilot sites where microgrids were deployed. The evaluation will take the form of a simulation assignment and include a peer review of the results.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic power systems Microgrids (Smart power grids)
- Resource Type:
- Courseware
-
Courseware
Reduction of energy consumption of buildings is an important step in the move towards a sustainable economy. How can buildings be made net zero energy, in different climates? This course introduces you to zero energy design. It will teach you a stepped approach to design a zero energy climate concept for existing buildings: homes, schools, offices, shops etc. It will demonstrate how an integrated approach, which takes into account both passive measures (such as thermal insulation and sun shading) and active measures (such as heat pumps and photovoltaic panels), can deliver the best results. It will do so by providing you with an overview of possible measures, and through reviewing several case studies of zero energy buildings in the Netherlands, with lessons for other climates as well. Thus, you will learn which measures are most suitable for individual buildings under local climate conditions. This course is for anyone interested in making buildings more energy efficient, who already possess asic technical knowledge.
-
Courseware
Did you know that cities take up less than 3% of the earth’s land surface, but more than 50% of the world’s population live in them? And, cities generate more than 70% of the global emissions? Large cities and their hinterlands (jointly called metropolitan regions) greatly contribute to global urbanization and sustainability challenges, yet are also key to resolving these same challenges. If you are interested in the challenges of the 21st century metropolitan regions and how these can be solved from within the city and by its inhabitants, then this Sustainable Urban Development course is for you! There are no simple solutions to these grand challenges! Rather the challenges cities face today require a holistic, systemic and transdisciplinary approach that spans different fields of expertise and disciplines such as urban planning, urban design, urban engineering, systems analysis, policy making, social sciences and entrepreneurship. This MOOC is all about this integration of different fields of knowledge within the metropolitan context. The course is set up in a unique matrix format that lets you pursue your line of interest along a specific metropolitan challenge or a specific theme. Because we are all part of the challenges as well as the solutions, we encourage you to participate actively! You will have the opportunity to explore the living conditions in your own city and compare your living environment with that of the global community. You will discover possible solutions for your city’s challenges and what it takes to implement these solutions. Your participation will also contribute to wider research into metropolitan regions as complex systems. We invite you to take the first steps in understanding the principles that will be essential to transform metropolitan regions into just, prosperous and sustainable places to live in!
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Sustainable urban development City planning
- Resource Type:
- Courseware
-
Courseware
Water transport through pipes, pressure losses, (pressure) network design and building, pump selection, pumping stations, power supply, quantitative reliability, operation and maintenance. Studie goals: The student will acquire the ability to: design a transportation network, identify critical situations for water hammer design a pumping station in terms of capacity, lay out and operation of pumps analyse a lopped and branched pipe system, analyse a drinking water system with ALEID or EPANET and a sewer system with HYDROWORKS, identify critical areas for water quality deterioration, analyse the reliability of a drinking water system and identify critical elements as well as formulate solutions to these points.
- Subjects:
- Building Services Engineering and Hydraulic Engineering
- Keywords:
- Water quality management Drinking water Pipelines Pumping stations Hydraulic structures -- Design construction
- Resource Type:
- Courseware
-
Courseware
Around the world, major challenges of our time such as population growth and climate change are being addressed in cities. Here, citizens play an important role amidst governments, companies, NGOs and researchers in creating social, technological and political innovations for achieving sustainability. Citizens can be co-creators of sustainable cities when they engage in city politics or in the design of the urban environment and its technologies and infrastructure. In addition, citizens influence and are influenced by the technologies and systems that they use every day. Sustainability is thus a result of the interplay between technology, policy and people’s daily lives. Understanding this interplay is essential for creating sustainable cities. In this MOOC, we zoom in on Amsterdam, Beijing, Ho Chi Minh City, Nairobi, Kampala and Suzhou as living labs for exploring the dynamics of co-creation for sustainable cities worldwide. We will address topics such as participative democracy and legitimacy, ICTs and big data, infrastructure and technology, and SMART technologies in daily life. This global scope will be used to illustrate why specific forms of co-creation are preferred in specific urban contexts. Moreover, we will investigate and compare these cities on three themes that have a vast effect on city life: - Water and waste - Energy, air, food and mobility - Green spaces and food This MOOC will teach you about the dynamics of co-creation and the key principles of citizens interacting with service providing companies, technology and infrastructure developers, policy makers and researchers. You will gain an understanding of major types of co-creation and their interdependency with their socio-technical and political contexts. You will become equipped to indicate how you can use co-creation to develop innovative technologies, policy arrangements or social practices for a sustainable city in your own community. You will demonstrate this by developing an action plan, research proposal or project idea. Basic knowledge of sustainability in urban settings, urban environmental technology and urban management is assumed.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Sustainable development Sustainable development -- Citizen participation City planning
- Resource Type:
- Courseware