Search Constraints
Number of results to display per page
Results for:
« Previous |
1 - 10 of 30
|
Next »
Search Results
-
MOOC
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications.
This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.
This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.
It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
- Course related:
- AAE5103 Artificial Intelligence in Aviation Industry
- Subjects:
- Computing
- Keywords:
- Machine learning Artificial intelligence
- Resource Type:
- MOOC
-
Others
This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu Brucher started work on this project as part of his thesis. In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the project and made the first public release, February the 1st 2010. Since then, several releases have appeared following a ~ 3-month cycle, and a thriving international community has been leading the development.
- Course related:
- EIE6207 Theoretical Fundamental and Engineering Approaches for Intelligent Signal and Information Processing
- Subjects:
- Computing
- Keywords:
- Machine learning Python (Computer program language)
- Resource Type:
- Others
-
Video
At TEDIndia, Pranav Mistry demos several tools that help the physical world interact with the world of data -- including a deep look at his SixthSense device and a new, paradigm-shifting paper "laptop." In an onstage Q&A, Mistry says he'll open-source the software behind SixthSense, to open its possibilities to all.
- Subjects:
- Electronic and Information Engineering and Computing
- Keywords:
- Human-computer interaction Augmented reality
- Resource Type:
- Video
-
Video
When children are separated from their parents -- whether due to migration, custody changes, incarceration or any number of other factors -- how can families maintain connection? Computer scientist Lana Yarosh showcases why it's important to design technology that empowers people to share meaningful interactions beyond a video chat or phone call, granting them the chance to reconnect despite life's big disruptions.
- Subjects:
- Technology and Computing
- Keywords:
- Communication -- Technological innovations -- Social aspects Communication technology
- Resource Type:
- Video
-
Video
Welcome to Zero to Hero for Natural Language Processing using TensorFlow! If you’re not an expert on AI or ML, don’t worry -- we’re taking the concepts of NLP and teaching them from first principles with our host Laurence Moroney.
- Subjects:
- Computing
- Keywords:
- Machine learning Natural language processing (Computer science)
- Resource Type:
- Video
-
Video
In 20 episodes, Jabril will teach you about Artificial Intelligence and Machine Learning! This course is based on a university-level curriculum. By the end of the course, you will be able to: * Define, differentiate, and provide examples of Artificial Intelligence and three types of Machine Learning: supervised, unsupervised, and reinforcement * Understand how different AI and ML approaches can be combined to create compelling applications such as natural language processing, robotics, recommender systems, and web search * Implement several types of AI to classify images, generate text from examples, play video games, and recommend content based on past preferences * Understand the causes of algorithmic bias and audit datasets for several of these causes
- Subjects:
- Computing
- Keywords:
- Human-Computer Interaction Machine learning Artificial intelligence
- Resource Type:
- Video
-
MOOC
Learn the core ideas in machine learning, and build your first models.
- Course related:
- ENG2002 Computer Programming
- Subjects:
- Computing
- Keywords:
- Machine learning
- Resource Type:
- MOOC
-
MOOC
In this course you will learn what Artificial Intelligence (AI) is, explore use cases and applications of AI, understand AI concepts and terms like machine learning, deep learning and neural networks. You will be exposed to various issues and concerns surrounding AI such as ethics and bias, & jobs, and get advice from experts about learning and starting a career in AI. You will also demonstrate AI in action with a mini project. This course does not require any programming or computer science expertise and is designed to introduce the basics of AI to anyone whether you have a technical background or not.
- Subjects:
- Computing
- Keywords:
- Artificial intelligence
- Resource Type:
- MOOC
-
MOOC
AI is not only for engineers. If you want your organization to become better at using AI, this is the course to tell everyone--especially your non-technical colleagues--to take. In this course, you will learn: - The meaning behind common AI terminology, including neural networks, machine learning, deep learning, and data science - What AI realistically can--and cannot--do - How to spot opportunities to apply AI to problems in your own organization - What it feels like to build machine learning and data science projects - How to work with an AI team and build an AI strategy in your company - How to navigate ethical and societal discussions surrounding AI
- Subjects:
- Computing
- Keywords:
- Artificial intelligence
- Resource Type:
- MOOC
-
Video
In this lecture, we consider strategies for adversarial games such as chess. We discuss the minimax algorithm, and how alpha-beta pruning improves its efficiency. We then examine progressive deepening, which ensures that some answer is always available.
- Course related:
- COMP4431 Artificial Intelligence
- Subjects:
- Computing and Mathematics and Statistics
- Keywords:
- Artificial intelligence
- Resource Type:
- Video
- « Previous
- Next »
- 1
- 2
- 3