Search Constraints
Number of results to display per page
Results for:
1 - 4 of 4
Search Results
-
Courseware
This course is intended for students enrolling for BSc with Education and BEd degrees. Solid state physics forms the backborn of physics. The module has four units: Introduction to solid state physics; Crystal defects and mechanical properties ; Thermal and electrical properties; and Band theory & Optical properties.In the first unit/activity i.e. introduction to solid state physics. The student is expected to explain the atomic structure, describe the various atomic bonds such as ionic bonds and covalent bonds. The learning will also require students to distinguish between crystalline and amorphous solids; polycrystalline and amorphous solids and to explain the production and use of X-ray diffraction. In the second unit i.e. crystal defects and mechanical properties, the learning includes, differentiating between the different types of crystal defects: the point defects (vacancy, interstitials, and substitutional) and dislocations (screw and edge). Here, the student learns that point defects are very localised and are of atomic size, while dislocation is a disorder which extend beyond the volume of one or two atoms. The effects of the defects on mechanical, and electrical properties of these defects are also part of the learning that will take place. In unit three the learning outcomes include definitions of heat capacity, and explanations of variation of heat capacity with temperature based on the classical, Einstein and Debye models. The students will be required to use the free electron theory to explain high thermal and electrical conductivities of metals and also be able to derive and apply the Wiedermann-Frantz law. Finally, in activity four, the expected learning should enable the students to use the band theory to explain the differences between conductors, semiconductors and insulators; explain the differences between intrinsic and extrinsic semiconductors in relation to the role of doping. At the end of it all, the students use the concepts of the interaction of electromagnetic waves (light) with materials to explain optical absorption, reflectivity and transmissivity.
- Subjects:
- Physics
- Keywords:
- Solid state physics
- Resource Type:
- Courseware
-
Courseware
In electrical engineering, solid-state materials and the properties play an essential role. A thorough understanding of the physics of metals, insulators and semiconductor materials is essential for designing new electronic devices and circuits. After short introduction of the IC fabrication process, the course starts with the crystallography. This will be followed by the basic principle of the quantum mechanics, the sold-state physics, band-structure and the relation with electrical properties of the solid-state materials. When the material physics has been throughly understood, the physics of the semiconductor device follows quite naturally and can be understood quickly and efficiently.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Semiconductors Solid state physics Matter -- Properties
- Resource Type:
- Courseware
-
Courseware
Mesoscopic physics is the area of Solid State physics that covers the transition regime between macroscopic objects and the microscopic, atomic world.The main goal of the course is to introduce the physical concepts underlying the phenomena in this field.
- Subjects:
- Physics
- Keywords:
- Mesoscopic phenomena (Physics)
- Resource Type:
- Courseware
-
Courseware
Thermal conductivity, the Wiedemann-Franz law and the collision integral for electron-electron scattering. This course is about the electronic properties of materials and contains lectures about scattering, transport in metals, phonons and superconductivity.
- Subjects:
- Physics
- Keywords:
- Materials -- Electric properties Thermoelectricity Superconductivity
- Resource Type:
- Courseware