Search Constraints
Number of results to display per page
Results for:
« Previous |
1 - 10 of 16
|
Next »
Search Results
-
Others
NIDA Technology Co. Ltd. (NTCL) was established to achieve the vison “Nonlinear Integrated Design and Analysis (NIDA)” and make practical use of “Second-order Direct Analysis Method”in structural engineering. NTCL aims to promote the industrialization of new research outcome and enhance the design level of engineering community.
- Course related:
- CSE48405 Design Project
- Subjects:
- Structural Engineering
- Keywords:
- Structural engineering Structural analysis (Engineering)
- Resource Type:
- Others
-
Others
The PEER Reports Series comprises state-of-the-art research in earthquake engineering and related fields by the more than 150 expert members of the PEER universities consortium. The current emphasis of the series is on performance-based engineering of lifelines and building structures.
- Course related:
- CSE1000 Introduction to Civil Engineering and Sustainable Development
- Subjects:
- Structural Engineering
- Keywords:
- Earthquake engineering
- Resource Type:
- Others
-
Others
The SAP2000 name has been synonymous with state-of-the-art analytical methods since its introduction over 45 years ago. CSI solvers have been tried and tested by the industry for over 45 years. The SAPFire Analysis Engine can support multiple 64-bit solvers for analysis optimization and can perform both eigen analysis and Ritz analysis. Parallelization options are available to take advantage of multiple processors.
- Subjects:
- Structural Engineering
- Keywords:
- SAP2000 (Computer file) Structural engineering Structural analysis (Engineering)
- Resource Type:
- Others
-
Others
In this course, it covers the topic of : Metallurgy of Steel Steel Structures subjected to fire State Design Tension Members Compression Members Beams Beam Columns
- Course related:
- CSE30311 Design of Steel Structures
- Subjects:
- Structural Engineering
- Keywords:
- Building Iron steel Steel Structural
- Resource Type:
- Others
-
MOOC
In this engineering course you will learn how to analyze vaults (long-span roofs) from three perspectives: 1. Efficiency = calculations of forces/stresses 2. Economy = evaluation of societal context and cost 3. Elegance = form/appearance based on engineering principles, not decoration We explore iconic vaults like the Pantheon, but our main focus is on contemporary vaults built after the industrial revolution. The vaults we examine are made of different materials, such as tile, reinforced concrete, steel and glass, and were created by masterful engineers/builders like Rafael Guastavino, Anton Tedesko, Pier Luigi Nervi, Eduardo Torroja, Félix Candela, and Heinz Isler. This course illustrates: - how engineering is a creative discipline and can become art - the influence of the economic and social context in vault design - the interplay between forces and form The course has been created for a general audience—no advanced math or engineering prerequisites are needed. This is the second of three courses on the Art of Structural Engineering, each of which are independent of each other. The course on bridges was launched in 2016, and another course will be developed on buildings/towers.
- Subjects:
- Structural Engineering
- Keywords:
- Roofs Suspension -- Design construction Structural analysis (Engineering)
- Resource Type:
- MOOC
-
MOOC
In this engineering course you will learn how to analyze bridges from three perspectives: Efficiency = calculations of forces/stresses Economy = evaluation of societal context and cost Elegance = form/appearance based on engineering principles, not decoration With a focus on some significant bridges built since the industrial revolution, the course illustrates how engineering is a creative discipline and can become art. We also show the influence of the economic and social context in bridge design and the interplay between forces and form.
- Subjects:
- Structural Engineering
- Keywords:
- Structural analysis (Engineering) Bridges -- Design construction
- Resource Type:
- MOOC
-
Video
This video explains why ridges move, and other musings on thermal movement of large civil works. Most people have a certain intuition about thermal expansion, but you may not have considered how engineers design to accommodate it on large civil structures. The video gives a quick overview on this important consideration that engineers must account for when designing infrastructure like pipelines, bridges, and even sidewalks.
- Subjects:
- Structural Engineering
- Keywords:
- Structural analysis (Engineering) Expansion (Heat)
- Resource Type:
- Video
-
Video
This video shows how simple reinforcement is used to prevent collapse of rock tunnels. Tunnels play an important role in our constructed environment as passageways for mines, conveyance for utilities, and routes for transportation. Rock bolts are a type of reinforcement for stabilizing rock excavations, usually made from steel bars or bolts. This simple construction method dramatically reduces the cost of making tunnels through rock safe from collapse.
- Subjects:
- Structural Engineering
- Keywords:
- Underground construction Rock bolts Tunneling Tunnels
- Resource Type:
- Video
-
Video
Wind can be one of the most critical and complicated loads on civil structures. The case of the Tacoma Narrows bridge is a well-known cautionary tale that’s discussed in engineering and physics classrooms across the world. Both resonance from vortex shedding and aeroelastic flutter contributed to the failure. When you push the envelope, you have to be vigilant because things that didn’t matter before start to become important (e.g. wind loads on lighter structures). Unanticipated challenges are a cost of innovation and that’s something that we can all keep in mind.
- Subjects:
- Structural Engineering
- Keywords:
- Washington (State) -- Tacoma -- Tacoma Narrows Bridge (1940) Suspension bridges Wind-pressure
- Resource Type:
- Video
-
Video
In many of the world’s tallest skyscrapers, there’s a secret device protecting the building and the people inside from strong motion due to wind and earthquakes. Did you know you can tune a skyscraper just like a guitar? In this video, we’re comparing theory to the real world for tuned mass dampers. Luckily this tech is simple enough that we can model it right in the garage. As silly as this little experiment looks, it’s actually not that far off from what engineers do in the real world (maybe without the googly eyes). The design phase for just about every major building includes some physical scale model tests. This video shows that the tuned mass damper is a great example of elegance in engineering.
- Subjects:
- Structural Engineering
- Keywords:
- Tuned mass dampers Buildings -- Earthquake effects Buildings -- Vibration
- Resource Type:
- Video