Search Constraints
Number of results to display per page
Results for:
Keywords
Artificial intelligence
Remove constraint Keywords: Artificial intelligence
« Previous |
41 - 43 of 43
|
Next »
Search Results
-
Courseware
This course includes interactive demonstrations which are intended to stimulate interest and to help students gain intuition about how artificial intelligence methods work under a variety of circumstances.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence
- Resource Type:
- Courseware
-
e-book
Artificial intelligence (AI) is a potent buzzword and happening technology which has greatly impacted the lifestyle of every human being either directly or indirectly and is shaping the future of tomorrow. In fact, AI is fast becoming an intrinsic part of our daily life and is not confined to university research labs, even if remarkable progress has been made in this domain. The benefit of this phenomenon is widely recognized in diversified areas, ranging from medicine to security to consumer applications and business, and resulting in improvements in the quality of life of humankind. Every new disruptive technology has its own pros and cons and AI is no exception to this rule. Privacy, data protection, and the rights of individuals pose social and ethical challenges.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence
- Resource Type:
- e-book
-
Presentation
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Hierarchical modeling and reasoning are fundamental in machine intelligence, and for this the two-parameter Poisson-Dirichlet Process (PDP) plays an important role. The most popular MCMC sampling algorithm for the hierarchical PDP and hierarchical Dirichlet Process is to conduct an incremental sampling based on the Chinese restaurant metaphor, which originates from the Chinese restaurant process (CRP). In this paper, with the same metaphor, we propose a new table representation for the hierarchical PDPs by introducing an auxiliary latent variable, called table indicator, to record which customer takes responsibility for starting a new table. In this way, the new representation allows full exchangeability that is an essential condition for a correct Gibbs sampling algorithm. Based on this representation, we develop a block Gibbs sampling algorithm, which can jointly sample the data item and its table contribution. We test this out on the hierarchical Dirichlet process variant of latent Dirichlet allocation (HDP-LDA) developed by Teh, Jordan, Beal and Blei. Experiment results show that the proposed algorithm outperforms their "posterior sampling by direct assignment" algorithm in both out-of-sample perplexity and convergence speed. The representation can be used with many other hierarchical PDP models.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning Artificial intelligence
- Resource Type:
- Presentation