Search Constraints
Number of results to display per page
Results for:
Keywords
Mathematical models
Remove constraint Keywords: Mathematical models
1 - 4 of 4
Search Results
-
Video
In this lecture I consider the fundamental, challenging and largely unsolved problem of deriving rigorously the most popular kinetic equations, starting from the laws governing the dynamics of microscopic systems. I plan to present classical and recent results, discussing also some present perspectives.
Event date: 30/3/2023
Speaker: Prof. Mario Pulvirenti (University of Roma La Sapienza)
Hosted by: Department of Applied Mathematics
- Subjects:
- Mathematics and Statistics
- Keywords:
- Mathematical models Kinetic theory of gases -- Mathematical models
- Resource Type:
- Video
-
Video
Adaptive computation is of great importance in numerical simulations. The ideas for adaptive computations can be dated back to adaptive finite element methods in 1970s. In this talk, we shall first review some recent development for adaptive methods with some application. Then, we will propose a deep adaptive sampling method for solving PDEs where deep neural networks are utilized to approximate the solutions. In particular, we propose the failure informed PINNs (FI-PINNs), which can adaptively refine the training set with the goal of reducing the failure probability. Compared with the neural network approximation obtained with uniformly distributed collocation points, the proposed algorithms can significantly improve the accuracy, especially for low regularity and high-dimensional problems.
Event date: 18/10/2022
Speaker: Prof. Tao Tang (Beijing Normal University-Hong Kong Baptist University United International College)
Hosted by: Department of Applied Mathematics
- Subjects:
- Mathematics and Statistics
- Keywords:
- Sampling (Statistics) Differential equations Partial -- Numerical solutions Mathematical models Adaptive computing systems
- Resource Type:
- Video
-
Courseware
The course addresses dynamic systems, i.e., systems that evolve with time. Typically these systems have inputs and outputs; it is of interest to understand how the input affects the output (or, vice-versa, what inputs should be given to generate a desired output). In particular, this course will concentrates on systems that can be modeled by Ordinary Differential Equations (ODEs), and that satisfy certain linearity and time-invariance conditions.
- Subjects:
- Computing
- Keywords:
- Mathematical models Dynamics System theory
- Resource Type:
- Courseware
-
Courseware
How do populations grow? How do viruses spread? What is the trajectory of a glider? Many real-life problems can be described and solved by mathematical models. In this course, you will form a team with another student and work in a project to solve a real-life problem. You will learn to analyze your chosen problem, formulate it as a mathematical model (containing ordinary differential equations), solve the equations in the model, and validate your results. You will learn how to implement Euler’s method in a Python program. If needed, you can refine or improve your model, based on your first results. Finally, you will learn how to report your findings in a scientific way. This course is mainly aimed at Bachelor students from Mathematics, Engineering and Science disciplines. However it will suit anyone who would like to learn how mathematical modeling can solve real-world problems.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Mathematical models
- Resource Type:
- Courseware