Search Constraints
Number of results to display per page
Results for:
Keywords
Textbooks
Remove constraint Keywords: Textbooks
Tags sim
Most books
Remove constraint Tags sim: Most books
1 - 3 of 3
Search Results
-
e-book
Most books that use MATLAB are aimed at readers who know how to program. This book is for people who have never programmed before. As a result, the order of presentation is unusual. The book starts with scalar values and works up to vectors and matrices very gradually. This approach is good for beginning programmers, because it is hard to understand composite objects until you understand basic programming semantics. But there are problems: The MATLAB documentation is written in terms of matrices, and so are the error messages. To mitigate this problem, the book explains the necessary vocabulary early and deciphers some of the messages that beginners find confusing. Many of the examples in the first half of the book are non-standard MATLAB. I address this problem in the second half by translating the examples into a more idiomatic style. The book puts a lot of emphasis on functions, in part because they are an important tool for controlling program complexity, and also because they are useful for working with MATLAB tools like fzero and ode45. I assume that readers know calculus, differential equations, and physics, but not linear algebra. I explain the math as I go along, but the descriptions might not be enough for someone who hasn't seen the material before. There are small exercises within each chapter, and a few larger exercises at the end of some chapters.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- MATLAB Textbooks Computers
- Resource Type:
- e-book
-
e-book
Data structures and algorithms are among the most important inventions of the last 50 years, and they are fundamental tools software engineers need to know. But in my opinion, most of the books on these topics are too theoretical, too big, and too bottom-up: Too theoretical: Mathematical analysis of algorithms is based on simplifying assumptions that limit its usefulness in practice. Many presentations of this topic gloss over the simplifications and focus on the math. In this book I present the most practical subset of this material and eliminate the rest. Too big: Most books on these topics are at least 500 pages, and some are more than 1000. By focusing on the topics I think are most useful for software engineers, I kept this book under 250 pages. Too bottom-up: Many data structures books focus on how data structures work (the implementations), with less about how to use them (the interfaces). In this book, I go “top down”, starting with the interfaces. Readers learn to use the structures in the Java Collections Framework before getting into the details of how they work. Finally, many present this material out of context and without motivation: it’s just one damn data structure after another! I try to alleviate the boredom by organizing the topics around an application—web search—that uses data structures extensively, and is an interesting and important topic in its own right. This application also motivates some topics that are not usually covered in an introductory data structures class, including persistent data structures, with Redis, and streaming algorithms. This book also presents basic aspects of software engineering practice, including version control and unit testing. Each chapter ends with an exercise that allows readers to apply what they have learned. Each exercise includes automated tests that check the solution. And for most exercises, I present my solution at the beginning of the next chapter. This book is intended for college students in computer science and related fields, as well as professional software engineers, people training in software engineering, and people preparing for technical interviews. I assume that the reader knows Java at an intermediate level, but I explain some Java features along the way, and provide pointers to supplementary material. People who have read Think Java or Head First Java are prepared for this book.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Java (Computer program language) Textbooks Data structures (Computer science)
- Resource Type:
- e-book
-
e-book
Think Bayes is an introduction to Bayesian statistics using computational methods. The premise of this book, and the other books in the Think X series, is that if you know how to program, you can use that skill to learn other topics. Most books on Bayesian statistics use mathematical notation and present ideas in terms of mathematical concepts like calculus. This book uses Python code instead of math, and discrete approximations instead of continuous mathematics. As a result, what would be an integral in a math book becomes a summation, and most operations on probability distributions are simple loops. I think this presentation is easier to understand, at least for people with programming skills. It is also more general, because when we make modeling decisions, we can choose the most appropriate model without worrying too much about whether the model lends itself to conventional analysis. Also, it provides a smooth development path from simple examples to real-world problems.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mathematics and Statistics
- Keywords:
- Python (Computer program language) Textbooks Bayesian statistical decision theory
- Resource Type:
- e-book