Search Constraints
Number of results to display per page
Results for:
Language
English
Remove constraint Language: English
Polyu oer sim
No
Remove constraint Polyu oer sim: No
Resource Type
MOOC
Remove constraint Resource Type: MOOC
« Previous |
1 - 20 of 69
|
Next »
Search Results
-
MOOC
Building construction is one of the most waste producing sectors. In the European Union, construction alone accounts for approximately 30% of the raw material input. In addition, the different life-cycle stages of buildings, from construction to end-of-life, cause a significant environmental impact related to energy consumption, waste generation and direct and indirect greenhouse gas emissions. The Circular Economy model offers guidelines and principles for promoting more sustainable building construction and reducing the impact on our environment. If you are interested in taking your first steps in transitioning to a more sustainable manner of construction, then this course is for you! In this course you will become familiar with circularity as a systemic, multi-disciplinary approach, concerned with the different scale, from material to product, building, city, and region. Some aspects of circularity that will be included in this course are maximizing reuse and recycle levels by closing the material loops. You will also learn how the Circular Economy can help to realign business incentives in supply chains, and how consumers can be engaged and contribute to the transition through new business models enabling circular design, reuse, repair, remanufacturing and recycling of building components. In addition, you will learn how architecture and urban design can be adapted according to the principles of the Circular Economy and ensure that construction is more sustainable. You will also learn from case studies how companies already profitably incorporate this new theory into the design, construction and operation of the built environment.
- Subjects:
- Building and Real Estate
- Keywords:
- Construction industry -- Environmental aspects Building materials -- Recycling Sustainable construction
- Resource Type:
- MOOC
-
MOOC
This course provides the tools needed to build a low-carbon power sector around the world. By diving into the perspective of different players in the power sector - from investors through to utilities, regulators and project developers - you will be able to choose the right strategies, policies and other levers needed to incentivise a cleaner power mix in your own context. This course explores the mix of approaches that can create a pro-renewables environment. It explores this from a policy, regulatory and supply-chain perspective and examines the incentives and rules available. Key policies are brought to life through case studies, learning from both success and failure. Key messages of the course include: - Ambitions for renewable electricity must be grounded in technical and financial feasibility - Pro-renewables environments recognise the needs of energy supply chain actors (e.g. project developers, utilities, regulators, electricity customers) and balances pricing, fiscal and financial and wider policies to incentivise and drive deployment - There are multiple ways to encourage deployment of renewables across different scales – these have strengths and weaknesses and must balance rate of deployment, affordability and efficiency of generation - Incentives and rules are a package and can be aligned to deliver affordable, efficient renewable electricity - several real-world examples demonstrate this - Different countries have succeeded and failed in creating pro-renewables environments – demonstrating that while lessons can be used from these experiences, there is no single route to success and the environment must be bespoke to the circumstances of the country. This course should help decision makers across the electricity supply chain, in both the public and private sector, understand what mix of incentives is ideal from their perspective.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Environmental Policy and Planning
- Keywords:
- Electric power distribution -- Environmental aspects Renewable energy sources
- Resource Type:
- MOOC
-
MOOC
reviews a range of survey data collection methods that are both interview-based (face-to-face and telephone) and self-administered (paper questionnaires that are mailed and those that are implemented online, i.e. as web surveys).
- Course related:
- HTM3205 Analysing and Interpreting Research
- Subjects:
- Statistics and Research Methods
- Keywords:
- Quantitative research Social sciences -- Research -- Methodology Qualitative research
- Resource Type:
- MOOC
-
MOOC
The building industry is exploding with data sources that impact the energy performance of the built environment and health and well-being of occupants. Spreadsheets just don’t cut it anymore as the sole analytics tool for professionals in this field. Participating in mainstream data science courses might provide skills such as programming and statistics, however the applied context to buildings is missing, which is the most important part for beginners. This course focuses on the development of data science skills for professionals specifically in the built environment sector. It targets architects, engineers, construction and facilities managers with little or no previous programming experience. An introduction to data science skills is given in the context of the building life cycle phases. Participants will use large, open data sets from the design, construction, and operations of buildings to learn and practice data science techniques. Essentially this course is designed to add new tools and skills to supplement spreadsheets. Major technical topics include data loading, processing, visualization, and basic machine learning using the Python programming language, the Pandas data analytics and sci-kit learn machine learning libraries, and the web-based Colaboratory environment. In addition, the course will provide numerous learning paths for various built environment-related tasks to facilitate further growth.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Python (Computer program language) City planning -- Statistical methods Information visualization
- Resource Type:
- MOOC
-
MOOC
In autonomous vehicles such as self-driving cars, we find a number of interesting and challenging decision-making problems. Starting from the autonomous driving of a single vehicle, to the coordination among multiple vehicles. This course will teach you the fundamental mathematical model for many of these real-world problems. Key topics include Markov decision process, reinforcement learning and event-based methods as well as the modelling and solving of decision-making for autonomous systems. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge in decision-making models for autonomous systems. Enhance your decision-making skills in automotive engineering by learning from Chalmers, one of the top engineering schools that distinguished through its close collaboration with industry.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Decision making Automobiles -- Design construction Automated vehicles
- Resource Type:
- MOOC
-
MOOC
Explore key concepts in the new field of design theory. Gain fundamental knowledge of what design is and its relation to culture, economics, and the arts.
- Keywords:
- Design Design -- Social aspects Design -- Philosophy
- Resource Type:
- MOOC
-
MOOC
This course provides an introduction to the foundational activities related to design thinking: a flexible, yet systematic process to define and solve problems. A common misconception is that design thinking requires artistry, but it is not centered on artistic principles. Design thinking is a strategy and mindset that can be applied to any industry to solve problems.
- Subjects:
- Design Elements
- Keywords:
- Design -- Methodology Problem solving Industrial design
- Resource Type:
- MOOC
-
MOOC
When you immerse yourself in the context of the user, you can uncover pain points and find opportunities for improvement or innovation not always evident to your audience. In this course, part of the Design Thinking MicroMasters program, you will learn how to use simple research methodologies including active listening to understand your target audience and uncover their obvious or latent needs. Emphasis will be placed on observation and interviewing as key methods to gain empathy for the user's experience and viewpoint. Equipped with this understanding, you will be prepared to identify and define more accurately the business problem. You will also review case studies and discuss strategies to foster productive client-stakeholder relationships, including user personification, context understanding, and empathy idea mapping (ideas that resonate with your target audience).
- Subjects:
- Design Elements
- Keywords:
- Design -- Methodology Problem solving Industrial design
- Resource Type:
- MOOC
-
MOOC
Creating prototypes puts a proposed solution into action. In this course, you will learn the value of prototypes and user testing as critical components of the design thinking process. You will examine case studies to understand the iterative process of prototyping and discover how new products and ideas can emerge as a result. As part of the Design Thinking MicroMasters program, you will study how to analyze and implement the results of user testing to ensure your solution can fully benefit from this inclusive and innovative process. Best practices for evaluating solutions will also be covered, including surveys, user evaluations, focus groups and interviews.
- Subjects:
- Design Elements
- Keywords:
- Design -- Methodology Industrial design
- Resource Type:
- MOOC
-
MOOC
Too often modern cities and suburbs are disorganized places where most new development makes daily life less pleasant, creates more traffic congestion, and contributes to climate change. This trend has to change; and our course is going to show you how. Ecodesign means integrating planning, urban design and the conservation of natural systems to produce a sustainable built and natural environment. Ecodesign can be implemented through normal business practices and the kinds of capital programs and regulations already in use in most communities. We will show you how ecodesign has already been used for exceptional projects in many cities and suburbs—from Hammarby Sjöstad in Stockholm to False Creek North in Vancouver to Battery Park City in Manhattan, as well as many smaller-scale examples that can be adopted in any community. Cities and suburbs built according to ecodesign principles can and should become normal, instead of just a few special examples, transforming urban development into desirable, lower-carbon, compact and walkable communities and business centers. As this course describes specific solutions to the vexing urban challenges we all face, course participants can see how these ideas might be applied in their own area. Participants will learn the conceptual framework of ecodesign, see many real, successful examples, and come to understand the tools, processes, and techniques for policy development and implementation. Ecodesign thinking is relevant to anyone who has a part in shaping or influencing the future of cities and suburbs – citizens, students, designers, public officials, and politicians. At the conclusion of the course participants will have the tools and strategies necessary to advocate policies and projects for a neighbourhood or urban district using the ecodesign framework.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Cities towns -- Growth City planning -- Environmental aspects Regional planning
- Resource Type:
- MOOC
-
MOOC
Electric powertrains are estimated to propel a large part of road vehicles in the future, due to their high efficiency and zero tailpipe emissions. But, the cost and weight of batteries and the time to charge them are arguments for the conventional powertrain in many vehicles. This makes it important for engineers working with vehicles to understand how both these powertrains work, and how to determine their performance and energy consumption for different type of vehicles and different ways of driving vehicles. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about electric powertrains. In this course, you will learn how electric and conventional combustion engine powertrains are built and how they work. You will learn methods to calculate their performance and energy consumption and how to simulate them in different driving cycles. You will also learn about the basic function, the main limits and the losses of: Combustion engines, Transmissions Electric machines, Power electronics Batteries. This knowledge will also be a base for understanding and analysing different types of hybrid vehicles, discussed in the course, Hybrid Vehicles. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Automobiles -- Power trains
- Resource Type:
- MOOC
-
MOOC
Humanity faces an immense challenge: providing abundant energy to everyone without wrecking the planet. If we want a high-energy future while protecting the natural world for our children, we must consider the environmental consequences of energy production and use. But money matters too: energy solutions that ignore economic costs are not realistic, particularly in a world where billions of people currently can’t afford access to basic energy services. How can we proceed? Energy Within Environmental Constraints won’t give you the answer. Instead, we will teach you how to ask the right questions and estimate the consequences of different choices. This course is rich in details of real devices and light on theory. You won’t find any electrodynamics here, but you will find enough about modern commercial solar panels to estimate if they would be profitable to install in a given location. We emphasizes costs: the cascade of capital and operating costs from energy extraction all the way through end uses. We also emphasize quantitative comparisons and tradeoffs: how much more expensive is electricity from solar panels than from coal plants, and how much pollution does it prevent? Is solar power as cost-effective an environmental investment as nuclear power or energy efficiency? And how do we include considerations other than cost? This course is intended for a diverse audience. Whether you are a student, an activist, a policymaker, a business owner, or a concerned citizen, this course will help you start to think carefully about our current energy system and how we can improve its environmental performance.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Environmental protection Environmental management Renewable energy sources Power resources
- Resource Type:
- MOOC
-
MOOC
focus on contemporary challenges that managers and entrepreneurs in food and beverage businesses should be able to face; and provide models and tools to design and implement appropriate courses of action to satisfy customers and build an advantage over the competition.
- Subjects:
- Food and Beverage
- Keywords:
- Food service management
- Resource Type:
- MOOC
-
MOOC
Understanding a city as a whole, its people, components, functions, scales and dynamics, is crucial for the appropriate design and management of the urban system. While the development of cities in different parts of the world is moving in diverse directions, all estimations show that cities worldwide will change and grow strongly in the coming years. Especially in the tropics over the next 3 decades, it is expected that the number of new urban residents will increase by 3 times the population of Europe today. Yet already now, there is an extreme shortage of designers and urban planners able to understand the functioning of a city as a system, and to plan a sustainable and resilient city. To answer questions like: Which methods can contribute to the sustainable performance of a city, and how can we teach this to the next generations, the ETH Future Cities Laboratory in Singapore has produced over the last 3 years many necessary research results. “Future Cities” aims to bring these latest results to the places where they are needed most. The only way to better understand the city is by going beyond the physical appearance and by focusing on different representations, properties and impact factors of the urban system. For that reason, in this course we will explore the city as the most complex human-made “organism” with a metabolism that can be modeled in terms of stocks and flows. We will open a holistic view on existing and new cities, with a focus on Asia. Data-driven approaches for the development of the future city will be studied, based on crowdsourcing and sensing. At first, we will give an overview of the components and dynamics of the future cities, and we will show the importance of information and information architecture for the cities of the future. The course will cover the origins, state-of-the-art and applications of information architecture and simulation. “Future Cities” will provide the basis to understand, shape, plan, design, build, manage and continually adapt a city. You will learn to see the consequences of citizen science and the merging of Architecture and information space. You will be up-to-date on the latest research and development on how to better understand, create and manage the future cities for a more resilient urban world.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Smart cities Cities towns -- Effect of technological innovations on City planning
- Resource Type:
- MOOC
-
MOOC
Handling statistical data is an essential part of psychological research. However, many people find the idea of using statistics, and especially statistical software packages, extremely daunting. This free course, Getting started with SPSS, takes a step-by-step approach to statistics software through seven interactive activities. No statistics software is needed.
- Keywords:
- SPSS (Computer file) Statistics -- Computer programs Statistics -- Data processing
- Resource Type:
- MOOC
-
MOOC
covers the basics of hotel demand management, distribution, and revenue management. participants will learn how e-commerce intermediaries such as online travel agencies are impacting the already-complex hospitality sector, and explore tools and techniques that will help you effectively market hospitality services and maximize business revenue in this new global industry landscape.
- Subjects:
- Hotel, Travel and Tourism
- Keywords:
- Hospitality industry -- Marketing Hotel management Hospitality industry -- Management
- Resource Type:
- MOOC
-
MOOC
Virtual reality is changing the way we interact with the world. But how does it work, what hardware is involved, and how is software written for it? In this course, part of the Virtual Reality Professional Certificate program, we will explore the foundations of user-friendly virtual reality app development for consumers, as well as enterprise solutions. Both hardware and software aspects will be discussed. You will learn to evaluate devices necessary for virtual reality applications, what their differences are, how you write interactive applications for virtual reality, and we will discuss the most frequent problems you are going to need to solve to write virtual reality software. In this course, you will explore the basics of virtual reality software through copying and modifying JavaScript to explore tradeoffs in VR application design. Extensive programming experience is not required. By the end of this course, you will understand what is important for successful virtual reality software and learn how to write simple virtual reality programs themselves with WebVR. This course is taught by an instructor with almost two decades of experience in virtual reality who leads the Immersive Visualization Laboratory at UC San Diego.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Interactive and Digital Media
- Keywords:
- Virtual reality Human-computer interaction Computer simulation
- Resource Type:
- MOOC
-
MOOC
Why are hybrid vehicles still more common than battery electric ones? Why are electric vehicles still more expensive than conventional or hybrid ones? In this course, you will get the answers to this and much more. While electric motors can improve vehicles regarding performance, energy consumption and emissions, they suffer from high cost and weight of batteries. Smart combinations of electric motors and combustion engines in a hybrid powertrain can combine these strengths with the advantages of combustion engines. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about hybridpowertrains. Inthis course, we willexamine different mechanical layouts of hybrid powertrains and how they influence the performance and complexity of the powertrain. Different sizing of powertrains in micro, mild, full hybrids, as well as plug-in hybrids, is also discussed and you'll learn how they can be modelled and analyzed for example by simulation of driving cycles. You will also learn about the Energy Management system and how this controls the hybrid powertrain modes and when to charge and discharge the battery. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Hybrid electric vehicles
- Resource Type:
- MOOC
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
MOOC
for individuals who are desirous of discovering the career opportunities and adventures available to and experienced by the Hospitality/Tourism industry professional person.
- Subjects:
- Hotel, Travel and Tourism
- Keywords:
- Hospitality industry
- Resource Type:
- MOOC
- « Previous
- Next »
- 1
- 2
- 3
- 4