Search Constraints
Number of results to display per page
Results for:
Resource Type
Courseware
Remove constraint Resource Type: Courseware
« Previous |
1 - 50 of 407
|
Next »
Search Results
-
Courseware
This course provides a thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis is placed on problem solving and quantitative reasoning. This course covers Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves.
- Course related:
- AP10005 Physics I
- Subjects:
- Physics
- Keywords:
- Physics
- Resource Type:
- Courseware
-
Courseware
This course explores the concepts and algorithms at the foundation of modern artificial intelligence, diving into the ideas that give rise to technologies like game-playing engines, handwriting recognition, and machine translation. Through hands-on projects, students gain exposure to the theory behind graph search algorithms, classification, optimization, reinforcement learning, and other topics in artificial intelligence and machine learning as they incorporate them into their own Python programs. By course’s end, students emerge with experience in libraries for machine learning as well as knowledge of artificial intelligence principles that enable them to design intelligent systems of their own.
- Course related:
- COMP1001 Problem Solving Methodology in Information Technology, COMP3011 Design and Analysis of Algorithms, COMP2011 Data Structures, and COMP4434 Artificial Intelligence
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Computer programming Computer science Artificial intelligence Python (Computer program language)
- Resource Type:
- Courseware
-
Courseware
This course has been designed for independent study. It provides everything you will need to understand the concepts covered in the course. The materials include:
A complete set of Lecture Videos by Professor Gilbert Strang.
Summary Notes for all videos along with suggested readings in Prof. Strang’s textbook Linear Algebra.
Problem Solving Videos on every topic taught by an experienced MIT Recitation Instructor.
Problem Sets to do on your own with Solutions to check your answers against when you’re done.
A selection of Java® Demonstrations to illustrate key concepts.
A full set of Exams with Solutions, including review material to help you prepare.
- Course related:
- AMA1120 Basic Mathematics II
- Subjects:
- Mathematics and Statistics
- Keywords:
- Algebras Linear
- Resource Type:
- Courseware
-
Courseware
Originally developed in 2022, this lecture theorizes relationships between research and design, hypothesizing the center and boundaries of Design as an Applied Science in which advanced research incorporates greater overlaps with related Applied and “Pure” Sciences.
- Subjects:
- Statistics and Research Methods
- Keywords:
- Design
- Resource Type:
- Courseware
-
Courseware
In the musculoskeletal system, the muscular and skeletal systems work together to support and move the body. The bones of the skeletal system serve to protect the body's organs, support the weight of the body, and give the body shape. The muscles of the muscular system attach to these bones, pulling on them to allow for movement of the body.
- Course related:
- HSS2011 Human Anatomy and ABCT2326 Human Physiology
- Subjects:
- Rehabilitation Sciences and Health Sciences
- Keywords:
- Musculoskeletal system
- Resource Type:
- Courseware
-
Courseware
Understanding the structure of a muscle cell. Created by Rishi Desai.
- Course related:
- HSS2011 Human Anatomy and RS2040 Functional Anatomy
- Subjects:
- Rehabilitation Sciences and Health Sciences
- Keywords:
- Muscles -- Physiology
- Resource Type:
- Courseware
-
Courseware
In this card, we are going to help you understand the general concept of Binary Search.
Binary Search is one of the most fundamental and useful algorithms in Computer Science. It describes the process of searching for a specific value in an ordered collection.
Terminology used in Binary Search:
(1) Target - the value that you are searching for
(2) Index - the current location that you are searching
(3) Left, Right - the indicies from which we use to maintain our search Space
(4) Mid - the index that we use to apply a condition to determine if we should search left or right
- Course related:
- COMP3011 Design and Analysis of Algorithms
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Computer algorithms
- Resource Type:
- Courseware
-
Courseware
This online course covers the topic of density and pressure,buoyant force and archimedes' principle, and fluid dynamics.
- Course related:
- AAE3001 Fundamentals of Aerodynamics
- Subjects:
- Aeronautical and Aviation Engineering and Physics
- Keywords:
- Fluid dynamics
- Resource Type:
- Courseware
-
Courseware
This course studies what is language and what does knowledge of a language consist of. It asks how do children learn languages and is language unique to humans; why are there many languages; how do languages change; is any language or dialect superior to another; and how are speech and writing related. Context for these and similar questions is provided by basic examination of internal organization of sentences, words, and sound systems. No prior training in linguistics is assumed.
- Subjects:
- English Language and Language and Languages
- Keywords:
- Linguistics
- Resource Type:
- Courseware
-
Courseware
Probability and statistics help to bring logic to a world replete with randomness and uncertainty. This course will give you the tools needed to understand data, science, philosophy, engineering, economics, and finance. You will learn not only how to solve challenging technical problems, but also how you can apply those solutions in everyday life.With examples ranging from medical testing to sports prediction, you will gain a strong foundation for the study of statistical inference, stochastic processes, randomized algorithms, and other subjects where probability is needed.
- Course related:
- AMA1501 Introduction to Statistics in Business
- Subjects:
- Mathematics and Statistics
- Keywords:
- Probabilities
- Resource Type:
- Courseware
-
Courseware
This course is intended for the student interested in understanding and appreciating common biological topics in the study of the smallest units within biology: molecules and cells. Molecular and cellular biology is a dynamic field. There are thousands of opportunities within the medical, pharmaceutical, agricultural, and industrial fields (just to name a few) for a person with a concentrated knowledge of molecular and cellular processes. This course will give you a general introduction to these topics. In addition to preparing for a diversity of career paths, an understanding of molecular and cell biology will help you make sound decisions in your everyday life that can positively impact your diet and health. This course includes the following units: Unit 1: Introduction to Biology Unit 2: Basic Chemistry Unit 3: Biological Molecules Unit 4: Cells and Cell Membranes Unit 5: Enzymes, Metabolism, Cellular Respiration Unit 6: Photosynthesis Unit 7: Cellular Reproduction: Mitosis Unit 8: Cellular Reproduction: Meiosis Unit 9: Mendelian Genetics and Chromosomes Unit 10: Gene Expression
- Course related:
- ABCT1102 General Biology and ABCT2312 Introductory Cell Biology and Biochemistry
- Subjects:
- Biology
- Keywords:
- Cytology Molecular biology
- Resource Type:
- Courseware
-
Courseware
Stanford Engineering Everywhere (SEE) expands the Stanford experience to students and educators online and at no charge. A computer and an Internet connection are all you need. The SEE course portfolio includes one of Stanford's most popular sequences: the three-course Introduction to Computer Science, taken by the majority of Stanford’s undergraduates, as well as more advanced courses in artificial intelligence and electrical engineering.
- Course related:
- EE1D01 Electrical Science for Everyone
- Subjects:
- Biomedical Engineering, Electronic and Information Engineering, Mechanical Engineering, and Computing, Data Science and Artificial Intelligence
- Keywords:
- Engineering Computer science
- Resource Type:
- Courseware
-
Courseware
Typsy is s a library of video courses from the world's best hospitality instructors.It's an online learning platform built to make learning fast, fun and on-the-go and a way to continuously learn new skills and connect with like-minded community members.
- Course related:
- HTM4305 Food and Beverage Management
- Subjects:
- Hotel, Travel and Tourism and Food and Beverage
- Keywords:
- Food service management Hotel management Hospitality industry Beverage industry
- Resource Type:
- Courseware
-
Courseware
The Hong Kong Jockey Club Disaster Preparedness and Response Institute E-Learning Platform.
- Course related:
- LSGI1B02 Climate Change and Society
- Subjects:
- Disaster Control and Management
- Keywords:
- Disasters -- Social aspects Disaster relief -- Psychological aspects Emergency management
- Resource Type:
- Courseware
-
Courseware
In this course, you will walk away with an up-to-date examination of the maturing FinTech industry and an understanding of the technologies set to shape the future of finance. Insight into who is currently adopting and driving financial technology innovation and the potential for partnerships between incumbents, start-ups and investors. The ability to critically assess the future of the financial services industry, through exploring complex real-world problems and how FinTech can be used to find solutions.A strategic framework to apply within your own role, and the opportunity to share this with like-minded professionals at an additional conference week.
- Course related:
- COMP4142 E-Payment and Cryptocurrency and COMP5521 Distributed Ledger Technology
- Subjects:
- Computing, Data Science and Artificial Intelligence and Finance
- Keywords:
- Financial services industry -- Technological innovations Finance -- Technological innovations
- Resource Type:
- Courseware
-
Courseware
Comprehensive coverage of core concepts grounded in both classic studies and current and emerging research, including coverage of the DSM-5 in discussions of psychological disorders. Incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.
- Course related:
- APSS298 Applied Psychology
- Subjects:
- Psychology
- Keywords:
- Psychology
- Resource Type:
- Courseware
-
Courseware
This catalog contains educational content originally curated by Boundless. In collaboration with the Boundless team, Lumen Learning imported these OER courses to the Lumen Platform, to ensure they remain freely available to the education community after Boundless ceased operations. Lumen maintains the Boundless content in the same condition it was provided to us. Please note, courses may contain issues with formatting, accessibility, and the degree to which content remains current, accurate, and complete.
- Course related:
- HSS2011 Human Anatomy and ABCT2326 Human Physiology
- Subjects:
- Health Sciences
- Keywords:
- Human anatomy Human body
- Resource Type:
- Courseware
-
Courseware
ArchiStar Academy has world class software and training for architects, engineers and universities students.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Design Technology
- Resource Type:
- Courseware
-
Courseware
Art Appreciation thoroughly investigates how quality is determined and created by artists in order to evaluate and appreciate art on a deeper level. This course emphasizes why each topic contributes to valuing a piece of art and provides the necessary knowledge to do so. Students are first introduced to the elements and principles of art and the importance of artists’ context and perspective. The course then covers different periods in art history, different techniques in art, and how to research and evaluate art.
- Subjects:
- Visual Arts
- Keywords:
- Art appreciation Art criticism Art -- Study teaching
- Resource Type:
- Courseware
-
Courseware
By the end of this section, you will be able to:Describe gel electrophoresis. Explain molecular and reproductive cloning Describe uses of biotechnology in medicine and agriculture.
- Resource Type:
- Courseware
-
Courseware
How can you tell if harmful bacteria are in your food or water that might make you sick? What you eat or drink can be contaminated with bacteria, viruses, parasites and toxins—pathogens that can be harmful or even fatal. Students learn which contaminants have the greatest health risks and how they enter the food supply. While food supply contaminants can be identified from cultures grown in labs, bioengineers are creating technologies to make the detection of contaminated food quicker, easier and more effective.
- Resource Type:
- Courseware
-
Courseware
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page 175. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 169. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 179, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 175. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf. This distribution also contains a configured version of the pdflatex compiler with all necessary packages and fonts needed to compile the LATEX source included in this PDF file.
- Subjects:
- Biology
- Keywords:
- Biology
- Resource Type:
- Courseware
-
Courseware
This course is intended for students enrolling for BSc with Education and BEd degrees. Solid state physics forms the backborn of physics. The module has four units: Introduction to solid state physics; Crystal defects and mechanical properties ; Thermal and electrical properties; and Band theory & Optical properties.In the first unit/activity i.e. introduction to solid state physics. The student is expected to explain the atomic structure, describe the various atomic bonds such as ionic bonds and covalent bonds. The learning will also require students to distinguish between crystalline and amorphous solids; polycrystalline and amorphous solids and to explain the production and use of X-ray diffraction. In the second unit i.e. crystal defects and mechanical properties, the learning includes, differentiating between the different types of crystal defects: the point defects (vacancy, interstitials, and substitutional) and dislocations (screw and edge). Here, the student learns that point defects are very localised and are of atomic size, while dislocation is a disorder which extend beyond the volume of one or two atoms. The effects of the defects on mechanical, and electrical properties of these defects are also part of the learning that will take place. In unit three the learning outcomes include definitions of heat capacity, and explanations of variation of heat capacity with temperature based on the classical, Einstein and Debye models. The students will be required to use the free electron theory to explain high thermal and electrical conductivities of metals and also be able to derive and apply the Wiedermann-Frantz law. Finally, in activity four, the expected learning should enable the students to use the band theory to explain the differences between conductors, semiconductors and insulators; explain the differences between intrinsic and extrinsic semiconductors in relation to the role of doping. At the end of it all, the students use the concepts of the interaction of electromagnetic waves (light) with materials to explain optical absorption, reflectivity and transmissivity.
- Subjects:
- Physics
- Keywords:
- Solid state physics
- Resource Type:
- Courseware
-
Courseware
The BIIG problem-solving method is unique in that it forces us to concentrate on decoding a real-world word problem completely into meaningful parts and aids us in finding and applying the right formula to easily arrive at the correct solution. As desired, it places less emphasis on the memorization of factual detail and more emphasis on the understanding of concepts. Evidently, this method is beneficial in many ways as it aids students in honing skills in critical thinking, logical approach and attention to detail. As a method for organizing information it helps students avoid errors and sets them on a path to succeed. As long as the numbers are “buddied up” with their units, “identified” by the appropriate variables, “isolated” within the context, and the answer is presented “gourmet”, or explained in terms of the original question, finding a solution to any complex problem will become seamless, understandable and enjoyable. This innovation in science education fosters a passion for learning and serves as a foundation for a new paradigm for problem-solving in any discipline of science worldwide.
- Subjects:
- Physics
- Keywords:
- Problem solving Physics
- Resource Type:
- Courseware
-
Courseware
Offshore Hydromechanics includes the following modules: 1. Hydrostatics, static floating stability, constant 2-D potential flow of ideal fluids, and flows in real fluids. Introduction to resistance and propulsion of ships. Review of linear regular and irregular wave theory. 2. Analytical and numerical means to determine the flow around, forces on, and motions of floating bodies in waves. 3. Higher order potential theory and inclusion of non-linear effects in ship motions. Applications to motion of moored ships and to the determination of workability. 4. Interaction between the sea and sea bottom as well as the hydrodynamic forces and especially survival loads on slender structures.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrostatics Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
Design and construction of breakwaters and closure dams in estuaries and rivers. Functional requirements, determination of boundary conditions, spatial and constructional design and construction aspects of breakwaters and dams consisting of rock, sand and caissons. Overview and history of breakwater and closure dam construction. The general design principles of a breakwater and a closure dam. Determination of boundary conditions for dams and breakwaters, with special attention to the design frequency. Methods to determine the design wave height from wave statistics. Overview of other boundary conditions (geotechnical and hydraulic). Materials, quarries and rock properties. Various properties of the different types of dams and breakwaters, like stability of riprap in current and wave conditions, design of armour layer, natural rock and concrete elements. The use of caissons for breakwaters and closure dams. Computation of element size using classical formulae, partial safety coefficients and probabilistic methods. Plan and cross section of breakwaters. Practical examples of breakwaters and closure dams. Execution (marine or land based equipment) of the works. Failure mechanisms and (cost) optimisation. One-week exercise in which a group of two or three students has to design a breakwater and a closure dam.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Tidal basins Breakwaters -- Design construction River channels Dams -- Design construction
- Resource Type:
- Courseware
-
Courseware
Design of shoreline protection along rivers, canals and the sea; load on bed and shoreline by currents, wind waves and ship motion; stability of elements under current and wave conditions; stability of shore protection elements; design methods, construction methods. Flow: recapitulation of basics from fluid mechanics (flow, turbulence), stability of individual grains (sand, but also rock) in different type of flow conditions (weirs, jets), scour and erosion. Porous Media: basic equation, pressures and velocities on the stability on the boundary layer; groundwater flow with impermeable and semi-impermeable structures; granular filters and geotextiles. Waves: recapitulation of the basics of waves, focus on wave forces on the land-water boundary, specific aspects of ship induced waves, stability of elements under wave action (loose rock, placed blocks, impermeable layers) Design: overview of the various types of protections, construction and maintenance; design requirements, deterministic and probabilistic design; case studies, examples Materials and environment: overview of materials to be used, teraction with the aquatic environment, role of the land-water boundary as part of the ecosystem; environmentally sound shoreline design.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Shore protection Coast defenses
- Resource Type:
- Courseware
-
Courseware
The course “Fluid Flow, Heat and Mass Transfer,” course number ta3220, is third-year BSc course in the program of Applied Earth Sciences at Delft University of Technology. Students in this class have already taken a course in “Transport Phenomena” in the second year, and “Fluid Flow Heat and Mass Transfer” is designed as a follow-up to that class, with an emphasis on topics of importance in applied earth sciences, and in particular to Petroleum Engineering, groundwater flow and mining. In practice, however I start over again with first principles with this class, because the initial concepts of the shell balance are difficult for students to grasp and can always use a second time through. The course covers simple fluid mechanics problems (rectilinear flow) using shell balances, for Newtonian and power-law fluids and Bingham plastics. Turbulence for Newtonian fluids is covered in the context of friction factors for flow in pipes, flow around spheres and flow in packed beds. In heat transfer we start again with shell balances for solving simple steady-state conduction problems. Thereafter, special attention is given to unsteady and multidimensional heat conduction, since the equations are similar for unsteady flow in aquifers and petroleum reservoirs. The concepts of orthogonal conduction and superposition are emphasized, as well as ways to treat perfectly insulated boundaries. The final topic in heat transfer is estimation of heat-transfer coefficients in flow in tubes. Although no other geometries are treated explicitly, I hope students recognize certain principles they can apply to other situations. We cover mass transfer only lightly, and only as by analogy to heat conduction: unsteady diffusion (by analogy to unsteady head conduction) and mass transfer in tubes (by analogy to heat transfer in tubes).
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Heat -- Transmission Mass transfer Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
Introduction to seismic theory, measurements and processing of seismic data to final focussed image for geological and/or physical interpretation.This course deals with the most important aspects of reflection seismics. Theory of seismic waves, aspects of data acquisition (seismic sources, receivers and recorders), and of data processing (CMP processing, velocity analysis, stacking, migration) will be dealt with. The course will be supplemented by a practical of 6 afternoons where the students will see the most important data-processing steps via exercises (in Matlab).
- Subjects:
- Land Surveying and Geo-Informatics and Disaster Control and Management
- Keywords:
- Seismic prospecting Seismometry Earthquakes Seismic reflection method
- Resource Type:
- Courseware
-
Courseware
Basic principles: Hydrostatics, constant flow phenomena and waves The treated theory includes: - Archimedes’ Law, hydrostatic pressure - Stability computations for floating structures – including the effect of shifting loads, and partially filled fluid tanks - Potential flow basics, 2D potential flow elements, superposition principle - Real (viscous) flows, scaling laws, flow regimes - Fluid forces on structures, drag and lift, resistance and propulsion, wind and current loads - Linear wave theory in regular and irregular waves and wave statistics
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrodynamics Hydrostatics Fluid mechanics Waves
- Resource Type:
- Courseware
-
Courseware
Are you fascinated by Geosciences and willing to take the challenge of predicting the nature and behavior of the Earth subsurface? This is your course! In a voyage through the Earth, Geoscience: the Earth and its Resources will explore the Earth interior and the processes forming mountains and sedimentary basins. You will understand how the sediments are formed, transported, deposited and deformed. You will develop knowledge on the behavior of petroleum and water resources. The course has an innovative approach focusing on key fundamental processes, exploring their nature and quantitative interactions. It will be shown how this acquired knowledge is used to predict the nature and behavior of the Earth subsurface. This is your ideal first step as a future Geoscientists or professional to upgrade your knowledge in the domain of Earth Sciences.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Plate tectonics Earth sciences Petroleum -- Geology Geology Hydrology
- Resource Type:
- Courseware
-
Courseware
The Geology 1 course is composed of three parts dedicated to 1. general knowledge of the system Earth, 2. tools for the 3D geometric representation of geological objects and 3. methods and techniques for the recognition of fundamental minerals and rocks.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Rock mechanics Minerals Earth sciences Geology
- Resource Type:
- Courseware
-
Courseware
This course makes students familiar with the design of offshore wind farms in general and focuses on the foundation design in particular. The course is based on actual cases of real offshore wind farms that have been built recently or will be built in the near future.
- Subjects:
- Environmental Engineering
- Keywords:
- Renewable energy sources Wind power Offshore wind power plants
- Resource Type:
- Courseware
-
Courseware
How can we ensure the continuous supply of the increasingly scarce raw materials that are needed to make the products we use every day? In this course, we will look at the potential benefits of circular procurement and how recycling technologies and more efficient ways of collecting and recycling critical raw materials (CRMs) can make your business and production more resource resilient. A good number of the materials found in everyday products are now referred to as “critical”. This means that there is a risk of failure in their supply and that they are also critical in terms of economic importance. Many metals, for instance, are already critical or could become critical in the near future due to their limited availability and the growing demand for products worldwide. Think of the newest electronic products that contain critical metals such as gallium, which is used in integrated circuits; beryllium, used in electronic and telecommunications equipment and permanent magnets and germanium found in infra-red optics. Innovative product design and reusing, recycling and remanufacturing products can help to deal with a raw materials shortage. But this can only provide an integrated solution if we keep CRMs in the loop through smarter CRM management. The starting point is to identify CRMs in products. It is not always clear what materials are in which products. It is, therefore, necessary to keep all metals in the loop for as long as possible. Scarcity in the supply chain can not only damage businesses but also negatively impact economic development and the environment. For this reason, the course will also discuss environmental issues and electric and electronic waste regulations. This course will be of value to a wide range of professionals working in or interested in this field. These include professionals involved in producing products containing CRMs (such as electronics) as well as local or national government officials tasked with organizing waste management and recycling for these products. Students interested in the field of waste management will also find this course helpful for their studies in electronics, industrial design, and industrial ecology.
- Subjects:
- Environmental Engineering
- Keywords:
- Refuse refuse disposal Waste products Recycling (Waste etc.) Raw materials Strategic materials
- Resource Type:
- Courseware
-
Courseware
Global Satellite Navigation Systems (GNSS), such as GPS, have revolutionized positioning and navigation. Currently, four such systems are operational or under development. They are the American GPS, the Russian Glonass, the European Galileo, and the Chinese Beidou-Compass. This course will address: (1) the technical principles of Global Navigation Satellite Systems (GNSS), (2) the methods to improve the accuracy of standard positioning services down to the millimeter accuracy level and the integrity of the systems, and (3) the various applications for positioning, navigation, geomatics, earth sciences, atmospheric research and space missions. The course will first address the space segment, user and control segment, signal structure, satellite and receiver clocks, timing, computation of satellite positions, broadcast and precise ephemeris. It will also cover propagation error sources such as atmospheric effects and multipath. The second part of the course covers autonomous positioning for car navigation, aviation, and location based services (LBS). This part includes the integrity of GNSS systems provided for instance by Space Based Augmentation Systems (e.g. WAAS, EGNOS) and Receiver Autonomous Integrity Monitoring (RAIM). It will also cover parameter estimation in dynamic systems: recursive least-squares estimation, Kalman filter (time update, measurement update), innovation, linearization and Extended Kalman filter. The third part of the course covers precise relative GPS positioning with two or more receivers, static and kinematic, for high-precision applications. Permanent GPS networks and the International GNSS Service (IGS) will be discussed as well. In the last part of the course there will be two tracks (students only need to do one): (1) geomatics track: RTK services, LBS, surveying and mapping, civil engineering applications (2) space track: space based GNSS for navigation, control and guidance of space missions, formation flying, attitude determination The final lecture will be on (scientific) applications of GNSS.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Global Positioning System Artificial satellites in navigation
- Resource Type:
- Courseware
-
Courseware
Geo-information has proven to be extremely helpful in many aspects of risk and disaster management: locational and situational awareness, monitoring of hazards, damage detection, sharing of information, defining vulnerability areas, etc. This course aims to provide knowledge on risk and disaster management activities, demonstrate use of geo-information technologies in emergency response, outline current challenges and motivate young geo-specialist to seek for advanced solutions.
-
Courseware
Part 2 of offshore hydromechanics (OE4630) involves the linear theory of calculating 1st order motions of floating structures in waves and all relevant subjects such as the concept of RAOs, response spectra and downtime/workability analysis.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrostatics Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
If you’re interested in the concept of building with nature, then this is the engineering course for you. This course explores the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructural designs. You will learn the Building with Nature ecosystem-based design concept and its applications in water and coastal systems. During the course, you will be presented with a range of case studies to deepen your knowledge of ecological and engineering principles. You’ll learn from leading Dutch engineers and environmental scientists who see the Building with Nature integrated design approach as fundamental to a new generation of engineers and ecologists. Join us in exploring the interface between hydraulic engineering, nature and society.
- Subjects:
- Building Services Engineering and Hydraulic Engineering
- Keywords:
- Sustainable development Hydraulic engineering Water resources development -- Environmental aspects
- Resource Type:
- Courseware
-
Courseware
For the first time in history, the number of world citizens without access to electricity services has dropped below one billion, but still more than 2.8 billion people lack access to clean and affordable cooking fuels. Access to clean, affordable and reliable energy services for all world citizens is a precondition for the achievement of many other Sustainable Development Goals, such as health and economic development. The provision of sustainable energy services for all is not just a technological challenge or one confined to developing countries. Industrial and post-industrial societies also need to address issues of energy poverty and energy injustice. Rather than tackling the technological dimension of the formidable challenge to provide an inclusive energy system with renewable and climate-neutral energy resources, this course will focus on its social and institutional dimension. Introduction to the principle of the 4 As of energy services – Accessibility, Availability, Affordability, and Acceptability (environmental and social) will enrich your perspective as an engineering professional. Balancing these four critical and interdependent criteria is a recurrent challenge for individuals and society as a whole, as the characterization of the four As evolves with economic development and changing societal preferences. You will learn how the rules of the game as defined in laws, regulation and market designs impact the balance between the 4As. Using a wider socio-technical systems perspective you will discover new solutions for the inclusive provision of energy services beyond the purely technological solutions. After this course you can engage in a richer, more informed debate about how to achieve an inclusive energy system. You will be able to translate this knowledge into strategies to serve society’s future energy needs. The cases presented from developed and developing countries will help you to develop and test your analytical skills. Interviews with industry leaders shaping the energy system will challenge you to reflect on the position these leaders take and the interests they serve. Lastly, you will put yourself to the test by demonstrating your newly acquired knowledge and skills as a strategic policy advisor, in writing guidelines for a strategic action plan for the energy system and institutional context which are relevant for you, in your company, your city or your country.
- Subjects:
- Environmental Engineering and Environmental Policy and Planning
- Keywords:
- Energy policy Sustainable development Power resources -- Economic aspects Power resources -- Environmental aspects
- Resource Type:
- Courseware
-
Courseware
The discipline of structural geology studies the architecture of the solid Earth and other planets. Rock deformation patterns are exciting features beacause of their aesthetic beauty and their economic interest to man. Knowledge of the subsurface structure is vital for the success of a variety of engineering and mineral exploration pograms. A thorough understanding of rock structures is essential for strategic planning in the petroleum and mining industry, in construction operations, in waste disposal surveys and for water exploration. Deformation structures in the country rock are important further for locallizing hazard zones, such as potential rockslide masses, ground subsidence, and seismic faults. Research activities concentrate on rock defomation structures in he shallow continental crust.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Geology Structural Map reading Maps
- Resource Type:
- Courseware
-
Courseware
Groningen, a province in the northeast of the Netherlands, is experiencing earthquakes due to the extraction of gas. This phenomenon is called induced seismicity. But what is induced seismicity? And how can the risk to life safety and the consequences for the built environment be reduced? The Groningen situation is unique and for this reason, solutions for the built environment cannot simply be copied from abroad. To contribute to a basic understanding of the various topics in this field, knowledge lectures have been developed as Open Course Ware by a large number of scientists and practitioners.
- Subjects:
- Land Surveying and Geo-Informatics and Disaster Control and Management
- Keywords:
- Netherls -- Groningen Earthquakes Induced seismicity
- Resource Type:
- Courseware
-
Courseware
The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Underwater acoustics -- Remote sensing Ocean bottom Ocean bottom -- Remote sensing
- Resource Type:
- Courseware
-
Courseware
Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces. You will familiarize yourself with the advantages and challenges of DC microgrids (which are still in an early stage). You will have the opportunity to master the topic of microgrids through an exercise in which you will evaluate selected pilot sites where microgrids were deployed. The evaluation will take the form of a simulation assignment and include a peer review of the results.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic power systems Microgrids (Smart power grids)
- Resource Type:
- Courseware
-
Courseware
The course addresses the following topics: • Overview • The subsoil (basics) • Safety and risk management • Basics of various kinds of tunnels • Basements • Special constructions • Small infrastructures, trenchless technology • Subsurface planning • Contracts and use of underground space • Legal aspects • Decision making process • Multiple use of land • Site visit major (relevant) project
- Subjects:
- Building and Real Estate
- Keywords:
- Underground construction Underground areas Tunneling
- Resource Type:
- Courseware
-
Courseware
Underestimating project complexity is widely accepted as one of the major causes of project failure. Based on international benchmarking activities (Merrow, 2010), we know that an average of 40% of projects do not deliver what they promised; for megaprojects in the oil and gas industry this figure is even worse (Ernst&Young, 2014). As with most external factors, many of the causes and consequences of complexity are difficult to avoid or control. When dealing with complexity, standard practices in the field of project management often overlook the inherent uncertainties linked to the length and scale of engineering and infrastructure projects and their constantly changing environments. The situation is exacerbated by rapidly evolving technologies and social change. Attempts to overcome these challenges by simply trying to reduce their causes is not enough. In this course, you will learn our approach to mastering complexity, focused on front-end development and teamwork, which will help you develop the skills you need to make timely actions in order to tackle complexities and improve your chances of project success. You will learn how to enhance your own capacities and capabilities by ensuring you have the necessary balance of complementary skills in your team. Project success starts with recognizing the main drivers of complexity, which can be highly subjective and highly dynamic. In this course, you will learn to identify what makes a project complex and how to perform a complexity assessment. Examining the elements of a project (such as interfaces, stakeholders, cultures, environment, technology, etc.) and their intricate interactions is key to mastering complexity. You will analyze these elements in the context of your own project. Then, based on our complexity framework, you will identify the complexity footprint of your project and use it to adapt your management processes. With personalized guidance and feedback from our world-class instructors, you will learn how to recognize what competencies you need to develop and how to adapt your management style accordingly, not only to improve project performance but also to enhance your decision-making capacity. This course has been designed by TU Delft’s international experts on Project Complexity, and is based on more than 60 years of practical experience as well as relevant research in the field. “We see projects still fail and there is a need to do things differently. That’s what this course is about: delivering the best practices for project execution based on our state-of-the-art research.” – Professor Hans Bakker.
- Subjects:
- Building and Real Estate
- Keywords:
- Construction industry -- Management Complexity (Philosophy) Project management
- Resource Type:
- Courseware
-
Courseware
Are you an engineer, scientist or technician? Are you dealing with measurements or big data, but are you unsure about how to proceed? This is the course that teaches you how to find the best estimates of the unknown parameters from noisy observations. You will also learn how to assess the quality of your results. TU Delft’s approach to observation theory is world leading and based on decades of experience in research and teaching in geodesy and the wider geosciences. The theory, however, can be applied to all the engineering sciences where measurements are used to estimate unknown parameters. The course introduces a standardized approach for parameter estimation, using a functional model (relating the observations to the unknown parameters) and a stochastic model (describing the quality of the observations). Using the concepts of least squares and best linear unbiased estimation (BLUE), parameters are estimated and analyzed in terms of precision and significance. The course ends with the concept of overall model test, to check the validity of the parameter estimation results using hypothesis testing. Emphasis is given to develop a standardized way to deal with estimation problems. Most of the course effort will be on examples and exercises from different engineering disciplines, especially in the domain of Earth Sciences. This course is aimed towards Engineering and Earth Sciences students at Bachelor’s, Master’s and postgraduate level.
- Keywords:
- Observers (Control theory) Mathematical statistics
- Resource Type:
- Courseware
-
Courseware
What do collapsed buildings, infected hospital patients, and crashed airplanes have in common? If you know the causes of these events and conditions, they can all be prevented. In this course, you will learn how to use the TU Delft mind-set to investigate the causes of such events so you can prevent them in the future. When, for instance, hundreds of hospital patients worldwide got infected after having gall bladder treatments, forensic engineering helped reveal how the design and use of the medical instruments could cause such widespread infections. As a result, changes were made to the instrument design and the procedural protocols in hospitals. Learning from failure in this case benefitted patient health and safety across the world. After taking this course you will have an understanding of failures and the investigation processes used to find their causes. You will learn how to apply lessons gained from investigating previous failures into new designs and procedures.
- Keywords:
- Forensic engineering Failure analysis (Engineering)
- Resource Type:
- Courseware
-
Courseware
Reduction of energy consumption of buildings is an important step in the move towards a sustainable economy. How can buildings be made net zero energy, in different climates? This course introduces you to zero energy design. It will teach you a stepped approach to design a zero energy climate concept for existing buildings: homes, schools, offices, shops etc. It will demonstrate how an integrated approach, which takes into account both passive measures (such as thermal insulation and sun shading) and active measures (such as heat pumps and photovoltaic panels), can deliver the best results. It will do so by providing you with an overview of possible measures, and through reviewing several case studies of zero energy buildings in the Netherlands, with lessons for other climates as well. Thus, you will learn which measures are most suitable for individual buildings under local climate conditions. This course is for anyone interested in making buildings more energy efficient, who already possess asic technical knowledge.
-
Courseware
Life in the city relies on the smooth operation of urban logistics. Everything from retail to services, construction to waste collection rely on an efficient and reliable freight transport system. However, with the increasing pressures of urbanization, this has to be balanced with the environmental and social impacts caused by transport activity. This is the challenge of City Logistics, a field of study that has significant practical implications for the world and the cities we live in. It is not merely a question of what is involved, but what can be done about urban freight transport to improve it for the sake of economic efficiency, quality of life, and sustainability. From a systematic scientific foundation of the field, this course will take you on a journey to learn how city logistics is understood and practiced in cities around the world. Our instructors, members of a renowned global expert network, will teach you the basics of this highly complex social system. Using their experience in real-world projects, they will illustrate how the knowledge learnt in this course is applied across industry and the public sector. This course caters primarily to university students or professionals working in urban transport infrastructure planning or logistics management. Whether you are simply curious about the topic or you intend to develop a career in these fields, this course will give you the tools you need to understand the complexities of urban freight transport systems. The course emphasizes the theoretical foundation, the rigorous evaluation, and a multi-disciplinary approach to this complex area. Course participants will benefit from numerous case studies of best practice in selected cities around the world, in a variety of business settings. Our emphasis on the global perspective is particularly relevant, since an understanding of local culture and political climate is an important factor in the success of any city logistics intervention. The course will provide an avenue for students to learn from their peers about the challenges faced in their respective cities, and how to apply the principles learned to the challenges faced in their own cities.
- Subjects:
- Transportation
- Keywords:
- Freight freightage Transportation -- Environmental aspects Sustainable development Urban transportation
- Resource Type:
- Courseware
-
Courseware
Did you know that cities take up less than 3% of the earth’s land surface, but more than 50% of the world’s population live in them? And, cities generate more than 70% of the global emissions? Large cities and their hinterlands (jointly called metropolitan regions) greatly contribute to global urbanization and sustainability challenges, yet are also key to resolving these same challenges. If you are interested in the challenges of the 21st century metropolitan regions and how these can be solved from within the city and by its inhabitants, then this Sustainable Urban Development course is for you! There are no simple solutions to these grand challenges! Rather the challenges cities face today require a holistic, systemic and transdisciplinary approach that spans different fields of expertise and disciplines such as urban planning, urban design, urban engineering, systems analysis, policy making, social sciences and entrepreneurship. This MOOC is all about this integration of different fields of knowledge within the metropolitan context. The course is set up in a unique matrix format that lets you pursue your line of interest along a specific metropolitan challenge or a specific theme. Because we are all part of the challenges as well as the solutions, we encourage you to participate actively! You will have the opportunity to explore the living conditions in your own city and compare your living environment with that of the global community. You will discover possible solutions for your city’s challenges and what it takes to implement these solutions. Your participation will also contribute to wider research into metropolitan regions as complex systems. We invite you to take the first steps in understanding the principles that will be essential to transform metropolitan regions into just, prosperous and sustainable places to live in!
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Sustainable urban development City planning
- Resource Type:
- Courseware