Search Constraints
Number of results to display per page
Results for:
Automated Navigation Technology
Remove constraint Automated Navigation Technology
« Previous |
1 - 10 of 13
|
Next »
Search Results
-
Video
Geospatial information science is a discipline that focuses on using geospatial information technology to understand people, places, nature and processes of the earth. IoT refers to Internet of things, the combination of sensors, software and other technologies to connect and exchange data with other devices and systems over the Internet. The era of IoT brings us opportunities and challenges for geospatial information science. In the keynote, five characteristics and three scientific issues of geo-spatial information science in the era of IoT are summarised.
Event date: 06/09/2022
Speaker: Prof. Daren Li
Moderator: Prof. Christopher Chao (Hong Kong Polytechnic University)
Panel members: Prof. Qingyan Chen, Prof. Qinhao Chen (Hong Kong Polytechnic University)
Hosted by: PolyU Academy for Interdisciplinary Research
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Spatial data mining Internet of things Geospatial data
- Resource Type:
- Video
-
Video
An online lecture on the topic of "Beidou Navigation Satellite System and Our Daily Lives".This lecture of “Science World: Exploring Space to Benefit Mankind” Education Programme in the 2021/22 school year for secondary students, which aims to cultivate the interest of local youth in space science and elevate their enthusiasm for participating in the development of space technology.
- Subjects:
- Industrial and Systems Engineering and Aeronautical and Aviation Engineering
- Keywords:
- Global Positioning System
- Resource Type:
- Video
-
e-book
Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Drone aircraft Computer security Textbooks United States
- Resource Type:
- e-book
-
e-book
This textbook provides an introduction to the important area of manufacturing processes. This text will explain the hows, whys, and whens of various machining operations, set-ups, and procedures. Throughout this text, you will learn how machine tools operate, and when to use one particular machine instead of another. It is organized for students who plan to enter the manufacturing technology field and for those who wish to develop the skills, techniques, and knowledge essential for advancement in this occupational cluster. The organization and contents of this text focus primarily on theory and practice. The machining processes and technology sections in this textbook cover such machine tools as surface grinders, bandsaws, drill presses, milling machines, and the engine lathe. Additionally, the importance of Computer Numerical Control (CNC) in the operation of the most machine tools is explained, and its role in automated manufacturing is explored thoroughly.
- Subjects:
- Industrial and Systems Engineering
- Keywords:
- Manufacturing processes Production engineering Textbooks
- Resource Type:
- e-book
-
e-book
Essentials of Geographic Information Systems integrates key concepts behind the technology with practical concerns and real-world applications. Recognizing that many potential GIS users are nonspecialists or may only need a few maps, this book is designed to be accessible, pragmatic, and concise. Essentials of Geographic Information Systems also illustrates how GIS is used to ask questions, inform choices, and guide policy. From the melting of the polar ice caps to privacy issues associated with mapping, this book provides a gentle, yet substantive, introduction to the use and application of digital maps, mapping, and GIS.
In today's world, learning involves knowing how and where to search for information. In some respects, knowing where to look for answers and information is arguably just as important as the knowledge itself. Because Essentials of Geographic Information Systems is concise, focused, and directed, readers are encouraged to search for supplementary information and to follow up on specific topics of interest on their own when necessary. Essentials of Geographic Information Systems provides the foundations for learning GIS, but readers are encouraged to construct their own individual frameworks of GIS knowledge. The benefits of this approach are two-fold. First, it promotes active learning through research. Second, it facilitates flexible and selective learning—that is, what is learned is a function of individual needs and interest.
Since GIS and related geospatial and navigation technology change so rapidly, a flexible and dynamic text is necessary in order to stay current and relevant. Though essential concepts in GIS tend to remain constant, the situations, applications, and examples of GIS are fluid and dynamic. Though this book is intended for use in introductory GIS courses, Essentials of Geographic Information Systems will also appeal to the large number of certificate, professional, extension, and online programs in GIS that are available today. In addition to providing readers with the tools necessary to carry out spatial analyses, Essentials of Geographic Information Systems outlines valuable cartographic guidelines for maximizing the visual impact of your maps. The book also describes effective GIS project management solutions that commonly arise in the modern workplace.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Land Surveying and Geo-Informatics
- Keywords:
- Textbooks Geographic information systems
- Resource Type:
- e-book
-
MOOC
In autonomous vehicles such as self-driving cars, we find a number of interesting and challenging decision-making problems. Starting from the autonomous driving of a single vehicle, to the coordination among multiple vehicles. This course will teach you the fundamental mathematical model for many of these real-world problems. Key topics include Markov decision process, reinforcement learning and event-based methods as well as the modelling and solving of decision-making for autonomous systems. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge in decision-making models for autonomous systems. Enhance your decision-making skills in automotive engineering by learning from Chalmers, one of the top engineering schools that distinguished through its close collaboration with industry.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Decision making Automobiles -- Design construction Automated vehicles
- Resource Type:
- MOOC
-
Courseware
Global Satellite Navigation Systems (GNSS), such as GPS, have revolutionized positioning and navigation. Currently, four such systems are operational or under development. They are the American GPS, the Russian Glonass, the European Galileo, and the Chinese Beidou-Compass. This course will address: (1) the technical principles of Global Navigation Satellite Systems (GNSS), (2) the methods to improve the accuracy of standard positioning services down to the millimeter accuracy level and the integrity of the systems, and (3) the various applications for positioning, navigation, geomatics, earth sciences, atmospheric research and space missions. The course will first address the space segment, user and control segment, signal structure, satellite and receiver clocks, timing, computation of satellite positions, broadcast and precise ephemeris. It will also cover propagation error sources such as atmospheric effects and multipath. The second part of the course covers autonomous positioning for car navigation, aviation, and location based services (LBS). This part includes the integrity of GNSS systems provided for instance by Space Based Augmentation Systems (e.g. WAAS, EGNOS) and Receiver Autonomous Integrity Monitoring (RAIM). It will also cover parameter estimation in dynamic systems: recursive least-squares estimation, Kalman filter (time update, measurement update), innovation, linearization and Extended Kalman filter. The third part of the course covers precise relative GPS positioning with two or more receivers, static and kinematic, for high-precision applications. Permanent GPS networks and the International GNSS Service (IGS) will be discussed as well. In the last part of the course there will be two tracks (students only need to do one): (1) geomatics track: RTK services, LBS, surveying and mapping, civil engineering applications (2) space track: space based GNSS for navigation, control and guidance of space missions, formation flying, attitude determination The final lecture will be on (scientific) applications of GNSS.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Global Positioning System Artificial satellites in navigation
- Resource Type:
- Courseware
-
Courseware
The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Underwater acoustics -- Remote sensing Ocean bottom Ocean bottom -- Remote sensing
- Resource Type:
- Courseware
-
MOOC
Autonomous vehicles, such as self-driving cars, rely critically on an accurate perception of their environment. In this course, we will teach you the fundamentals of multi-object tracking for automotive systems. Key components include the description and understanding of common sensors and motion models, principles underlying filters that can handle varying number of objects, and a selection of the main multi-object tracking (MOT) filters. The course builds and expands on concepts and ideas introduced in CHM013x: ""Sensor fusion and nonlinear filtering for automotive systems"". In particular, we study how to localize an unknown number of objects, which implies various interesting challenges. We focus on cameras, laser scanners and radar sensors, which are all commonly used in vehicles, and emphasize on situations where we seek to track nearby pedestrians and vehicles. Still, most of the involved methods are more general and can be used for surveillance or to track, e.g., biological cells, sports athletes or space debris. The course contains a series of videos, quizzes and hands-on assignments where you get to implement several of the most important algorithms. Learn from award-winning and passionate teachers to enhanceyour knowledge at the forefront of research on self-driving vehicles. Chalmers is among the top engineering schools that distinguish itself through its close collaboration with industry.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Automobiles -- Design construction Computer vision Automated vehicles
- Resource Type:
- MOOC
-
MOOC
Engineers in the automotive industry are required to understand basic safety concepts. With increasing worldwide efforts to develop connected and self-driving vehicles, traffic safety is facing huge new challenges. This course is for students or professionals who have a bachelor's degree in mechanical engineering or similar and who are interested in a future in the vehicle industry or in road design and traffic engineering. It's also of value for people already working in these areas who wantbetter insight into safety issues. This course teaches the fundamentals of active safety (systems for avoiding crashes or reducing crash consequences) as well as passive safety (systems for avoiding or reducing injuries). Key concepts include in-crash protective systems, collision avoidance, and safe automated driving. The course will introduce scientific and engineering methodologies that are used in the development and assessment of traffic safety and vehicle safety. This includes methods to study the different components of real-world traffic systems with the goal to identify and understand safety problems and hazards. It includes methods to investigate the attitudes and behavior of drivers and other road users as well as recent solutions to improve active safety. Italso includes methods to study human body tolerance to impact and solutions to minimize the injury risk in crashes. Study topics include crash data analysis and in-situ observational studies of drivers and other road users by the use of instrumented vehicles and roadside camera systems. Solutions in active safety, such as driver alertness monitoring, driver information as well as collision avoidance and collision mitigation systems, will be described. Examples of in-crash protective systems are combinations of traditional restraints such as seat belts and airbags but with advanced functions such as automatic adaption to the individual occupant as well as pre-collision activation based on advanced integrated sensor systems and communication systems. The course will be based on recorded lectures that use videos and animations to enhance the experience. Online tutorials that access simulation models will give the participants an experience of influencing parameters in active safety and passive safety systems. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Transportation
- Keywords:
- Traffic safety Roads -- Design construction Motor vehicles -- Safety measures Automobile industry trade
- Resource Type:
- MOOC