Search Constraints
Number of results to display per page
Results for:
Renewable Energy Integration
Remove constraint Renewable Energy Integration
« Previous |
1 - 10 of 27
|
Next »
Search Results
-
Video
In the presentation, Prof. Chan shared Singapore’s long-term energy plan and research focus, as well as a few major initiatives on hydrogen application. He then introduced turquoise hydrogen and the catalytic decomposition of methane for hydrogen production, followed by an overview of the research activities on hydrogen and fuel cells at NTU over the last 30 years.
Event Date: 13/6/2023
Speaker: Prof. CHAN Siew Hwa (Nanyang Technological University)
Hosted by: PolyU Academy for Interdisciplinary Research
- Subjects:
- Electrical Engineering
- Keywords:
- Clean energy Hydrogen as fuel
- Resource Type:
- Video
-
Others
The IEA is committed to shaping a secure and sustainable energy future for all
-
e-journal
In this journal platform, you can find the articles which published under the open license. The journal including the disciplines:
Agriculture Sciences
Environmental Sciences
Social Sciences
Computer Science
- Subjects:
- Marketing, Finance, Environmental Sciences, Economics, Computing, Accounting, Management, and E-Commerce
- Keywords:
- Electronic commerce Marketing Periodicals Industrial management Agriculture Computer science Management Economics Social sciences Environmental sciences Information technology Accounting Finance
- Resource Type:
- e-journal
-
e-book
The overall goal of the authors with General Chemistry: Principles, Patterns, and Applications was to produce a text that introduces the students to the relevance and excitement of chemistry. Although much of first-year chemistry is taught as a service course, Bruce and Patricia feel there is no reason that the intrinsic excitement and potential of chemistry cannot be the focal point of the text and the course. So, they emphasize the positive aspects of chemistry and its relationship to students' lives, which requires bringing in applications early and often. In addition, the authors feel that many first year chemistry students have an enthusiasm for biologically and medically relevant topics, so they use an integrated approach in their text that includes explicit discussions of biological and environmental applications of chemistry. Topics relevant to materials science are also introduced to meet the more specific needs of engineering students. To facilitate integration of such material, simple organic structures, nomenclature, and reactions are introduced very early in the text, and both organic and inorganic examples are used wherever possible. This approach emphasizes the distinctions between ionic and covalent bonding, thus enhancing the students' chance of success in the organic chemistry course that traditionally follows general chemistry. Finally, the authors made a conscious effort to treat material that has traditionally been relegated to boxes, and thus perhaps perceived as peripheral by the students, by incorporating it into the text to serve as a learning tool. To begin the discussion of chemistry rapidly, the traditional first chapter introducing units, significant figures, conversion factors, dimensional analysis, and so on, has been reorganized. The material has been placed in the chapters where the relevant concepts are first introduced, thus providing three advantages: Eliminates the tedium of the traditional approach, which introduces mathematical operations at the outset, and thus avoids the perception that chemistry is a mathematics course; Avoids the early introduction of operations such as logarithms and exponents, which are typically not encountered again for several chapters and may easily be forgotten when they are needed; and Provides a review for those students who have already had relatively sophisticated high school chemistry and math courses, although the sections are designed primarily for students unfamiliar with the topic. Consider this text for your course if you are interested in In summary, a text that represents a step in the evolution of general chemistry texts toward one that reflects the increasing overlap between chemistry and other disciplines. Most importantly, if you want a text that discusses exciting and relevant aspects of biological, environmental, and materials science that are usually relegated to the last few chapters, in a format that allows the you to tailor the emphasis to the needs of the class. Request your desk copy today.
- Subjects:
- Chemistry
- Keywords:
- Environmental chemistry Chemistry Physical theoretical Chemistry Textbooks
- Resource Type:
- e-book
-
MOOC
Humanity faces an immense challenge: providing abundant energy to everyone without wrecking the planet. If we want a high-energy future while protecting the natural world for our children, we must consider the environmental consequences of energy production and use. But money matters too: energy solutions that ignore economic costs are not realistic, particularly in a world where billions of people currently can’t afford access to basic energy services. How can we proceed? Energy Within Environmental Constraints won’t give you the answer. Instead, we will teach you how to ask the right questions and estimate the consequences of different choices. This course is rich in details of real devices and light on theory. You won’t find any electrodynamics here, but you will find enough about modern commercial solar panels to estimate if they would be profitable to install in a given location. We emphasizes costs: the cascade of capital and operating costs from energy extraction all the way through end uses. We also emphasize quantitative comparisons and tradeoffs: how much more expensive is electricity from solar panels than from coal plants, and how much pollution does it prevent? Is solar power as cost-effective an environmental investment as nuclear power or energy efficiency? And how do we include considerations other than cost? This course is intended for a diverse audience. Whether you are a student, an activist, a policymaker, a business owner, or a concerned citizen, this course will help you start to think carefully about our current energy system and how we can improve its environmental performance.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Environmental protection Environmental management Renewable energy sources Power resources
- Resource Type:
- MOOC
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
MOOC
This course provides the tools needed to build a low-carbon power sector around the world. By diving into the perspective of different players in the power sector - from investors through to utilities, regulators and project developers - you will be able to choose the right strategies, policies and other levers needed to incentivise a cleaner power mix in your own context. This course explores the mix of approaches that can create a pro-renewables environment. It explores this from a policy, regulatory and supply-chain perspective and examines the incentives and rules available. Key policies are brought to life through case studies, learning from both success and failure. Key messages of the course include: - Ambitions for renewable electricity must be grounded in technical and financial feasibility - Pro-renewables environments recognise the needs of energy supply chain actors (e.g. project developers, utilities, regulators, electricity customers) and balances pricing, fiscal and financial and wider policies to incentivise and drive deployment - There are multiple ways to encourage deployment of renewables across different scales – these have strengths and weaknesses and must balance rate of deployment, affordability and efficiency of generation - Incentives and rules are a package and can be aligned to deliver affordable, efficient renewable electricity - several real-world examples demonstrate this - Different countries have succeeded and failed in creating pro-renewables environments – demonstrating that while lessons can be used from these experiences, there is no single route to success and the environment must be bespoke to the circumstances of the country. This course should help decision makers across the electricity supply chain, in both the public and private sector, understand what mix of incentives is ideal from their perspective.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Environmental Policy and Planning
- Keywords:
- Electric power distribution -- Environmental aspects Renewable energy sources
- Resource Type:
- MOOC
-
Courseware
This course makes students familiar with the design of offshore wind farms in general and focuses on the foundation design in particular. The course is based on actual cases of real offshore wind farms that have been built recently or will be built in the near future.
- Subjects:
- Environmental Engineering
- Keywords:
- Renewable energy sources Wind power Offshore wind power plants
- Resource Type:
- Courseware
-
Courseware
For the first time in history, the number of world citizens without access to electricity services has dropped below one billion, but still more than 2.8 billion people lack access to clean and affordable cooking fuels. Access to clean, affordable and reliable energy services for all world citizens is a precondition for the achievement of many other Sustainable Development Goals, such as health and economic development. The provision of sustainable energy services for all is not just a technological challenge or one confined to developing countries. Industrial and post-industrial societies also need to address issues of energy poverty and energy injustice. Rather than tackling the technological dimension of the formidable challenge to provide an inclusive energy system with renewable and climate-neutral energy resources, this course will focus on its social and institutional dimension. Introduction to the principle of the 4 As of energy services – Accessibility, Availability, Affordability, and Acceptability (environmental and social) will enrich your perspective as an engineering professional. Balancing these four critical and interdependent criteria is a recurrent challenge for individuals and society as a whole, as the characterization of the four As evolves with economic development and changing societal preferences. You will learn how the rules of the game as defined in laws, regulation and market designs impact the balance between the 4As. Using a wider socio-technical systems perspective you will discover new solutions for the inclusive provision of energy services beyond the purely technological solutions. After this course you can engage in a richer, more informed debate about how to achieve an inclusive energy system. You will be able to translate this knowledge into strategies to serve society’s future energy needs. The cases presented from developed and developing countries will help you to develop and test your analytical skills. Interviews with industry leaders shaping the energy system will challenge you to reflect on the position these leaders take and the interests they serve. Lastly, you will put yourself to the test by demonstrating your newly acquired knowledge and skills as a strategic policy advisor, in writing guidelines for a strategic action plan for the energy system and institutional context which are relevant for you, in your company, your city or your country.
- Subjects:
- Environmental Engineering and Environmental Policy and Planning
- Keywords:
- Energy policy Sustainable development Power resources -- Economic aspects Power resources -- Environmental aspects
- Resource Type:
- Courseware
-
Courseware
Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces. You will familiarize yourself with the advantages and challenges of DC microgrids (which are still in an early stage). You will have the opportunity to master the topic of microgrids through an exercise in which you will evaluate selected pilot sites where microgrids were deployed. The evaluation will take the form of a simulation assignment and include a peer review of the results.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic power systems Microgrids (Smart power grids)
- Resource Type:
- Courseware
- « Previous
- Next »
- 1
- 2
- 3