Search Constraints
Number of results to display per page
Results for:
Affiliation
Delft University of Technology
Remove constraint Affiliation: Delft University of Technology
Search Results
-
Courseware
This course explains how electric mobility can work for various businesses, including fleet managers, automobile manufacturers and charging infrastructure providers. The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will provide insights into and examples of how innovations have disrupted conventional businesses and created new businesses altogether. This will be explained through various concepts and models, including total cost of ownership models, lean mass production, value chain thinking and business integration.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles Electric vehicle industry
- Resource Type:
- Courseware
-
Courseware
This course focuses on the technology behind electric cars. You will explore the working principle of electric vehicles, delve into the key roles played by motors and power electronics, learn about battery technology, EV charging, smart charging and about future trends in the development of electric cars.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles Electric vehicles -- Batteries
- Resource Type:
- Courseware
-
Courseware
This course explores the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure; profitable business models for electric mobility; and effective policies for governmental bodies, which will accelerate the uptake of electric mobility.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles
- Resource Type:
- Courseware
-
MOOC
You will also learn about the practical factors that need to be taken into consideration during the transition process, i.e. the competency of your people and your IT, in order to successfully implement a new business model. What you'll learn: How to create a business model roadmap. How to plan concrete actions to realize a new business model. How to find partners to realize a new business model. In this business and management course, you will learn how to make a practical action plan to implement your new business model. Designing a new business model is one thing, but how do you actually put it into practice? How do you move from your current model to a new business model? You will create a business model roadmap that will include practical activities that take into consideration the possible risks associated with moving to a new business model.
- Subjects:
- Management
- Keywords:
- Business planning Strategic planning Industrial management
- Resource Type:
- MOOC
-
MOOC
Does your business need a make-over? Are you unsure how to start? Having an innovative business model is key for a profitable business and growth. In this business and management course, you will learn how to design, test and implement new business models for sustainable success. This course introduces you to the main topics of business model innovation. You will learn what drives business model innovation and why it is valuable to you and your business. You will apply practical tools to (re)design and test a business model. Be inspired by real-life business model examples from fellow entrepreneurs and learn from leading experts who design business model innovations. By the end of this course, you will be able to structure your thinking and communicate your business model ideas and learn how to improve your own business. Start the course anytime, and complete it at your own pace! What you'll learn: What a business model is. Why business models matter to your firm and the value they bring. How business model innovation improves business performance. How tooling can help you to innovate your business model.in
- Subjects:
- Management
- Keywords:
- Business planning Strategic planningIndustrial management
- Resource Type:
- MOOC
-
Courseware
This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.
-
Courseware
This course is for all of those struggling with data analysis. You will learn: - Overcome data analysis challenges in your work and research - Increase your productivity and make better business decisions - Enhance your data analysis skills using spreadsheets - Learn about advanced spreadsheet possibilities like array formulas and pivottables - Learn about Excel 2013 features like PowerPivot & PowerMap - Learn to organize and test your spreadsheets
-
Courseware
This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.
- Subjects:
- Electrical Engineering
- Keywords:
- Electronic circuits Power electronics
- Resource Type:
- Courseware
-
Courseware
This course is a basic course on Instrumentation and Measurement. Firstly, the detection limit in a typical instrument for measurement of an electrical quantity is determined for: offset, finite common-mode rejection, noise and interference. The dominant source of uncertainty is identified and the equivalent input voltage/current sources are calculated. Secondly, the measurement of a non-electrical quantity is discussed. In this case the detection limit should be expressed in terms of the non-electrical input parameter of interest. Issues discussed are: (cross-)sensitivities in frequently used transduction effects, non-electrical source loading and noise in the non-electrical signal domain. Coupled domain formal modeling is subsequently introduced to facilitate analytical multi-domain system analysis. Finally, the detection limit in typical applications in the mechanical, thermal, optical and magnetic signal domain are analysed, along with circuit and system techniques to maximize overall system detectivity. The tools that are introduced in the course, such as the formal modeling and the calculation of the detection limit, are applied in the mid-term project to a real-world measurement problem.
- Subjects:
- Electrical Engineering
- Keywords:
- Electronic instruments Electronic measurements
- Resource Type:
- Courseware
-
Courseware
This course covers the main tasks required from data analysts today, including importing, summarizing, interpreting, analyzing and visualizing data. It aims to equip you with the tools that will enable you to be an independent data analyst. Most techniques will be taught in Excel with add-ons and free tools available online. You will learn: - How to make data come to life with well-known types of visualizations such as line and bar graphs and new types of visualizations such as spark lines, contour plots and population pyramids. - How to create dashboards in Excel based on live data that can meet managerial and business needs. - How to connect data from different sources, such as the web and exports from your CRM, ERP, SAP or data warehouse. - Some hands-on data science and how to use actionable analysis tools. - Deep dive into known tools like PivotTables and introduce new ones like the analysis toolpak