Search Constraints
Number of results to display per page
Results for:
Keywords
Python (Computer program language)
Remove constraint Keywords: Python (Computer program language)
Keywords
Textbooks
Remove constraint Keywords: Textbooks
1 - 10 of 10
Search Results
-
e-book
Este libro está dirigido, principalmente, a Estudiantes y Docentes que quieren aprender a programarcomo forma de fortalecer sus capacidades cognoscitivas y así obtener un beneficio adicional de su computador para lograr un mejor provecho de sus estudios. Dada la orientación del libro respecto a programar para resolver problemas asociados a las Ciencias e Ingenierías, el requisito mínimo de matemáticas que hemos elegido para presentar el contenido del mismo se cubre, normalmente, en el tercer año del bachillerato. No obstante, el requisito no es obligatorio para leer el libro en su totalidad y adquirir los conocimientos de programación obviando el contenido matemático.
- Subjects:
- Computing
- Keywords:
- Computer programming Programming languages (Electronic computers) Textbooks Python (Computer program language)
- Resource Type:
- e-book
-
e-book
How to Think Like a Computer Scientist: Learning with Pythonis an introduction to programming using Python.
- Subjects:
- Computing
- Keywords:
- Computer programming Programming languages (Electronic computers) Textbooks Python (Computer program language)
- Resource Type:
- e-book
-
e-book
The book is based on “First semester in Numerical Analysis with Julia”, written by Giray Ökten. The contents of the original book are retained, while all the algorithms are implemented in Python (Version 3.8.0). Python is an open source (under OSI), interpreted, general-purpose programming language that has a large number of users around the world. Python is ranked the third in August 2020 by the TIOBE programming community index, a measure of popularity of programming languages, and is the top-ranked interpreted language. We hope this book will better serve readers who are interested in a first course in Numerical Analysis, but are more familiar with Python for the implementation of the algorithms. The first chapter of the book has a self-contained tutorial for Python, including how to set up the computer environment. Anaconda, the open-source individual edition, is recommended for an easy installation of Python and effortless management of Python packages, and the Jupyter environment, a web-based interactive development environment for Python as well as many other programming languages, was used throughout the book and is recommended to the readers for easy code development, graph visualization and reproducibility.
- Subjects:
- Computing
- Keywords:
- Numerical analysis Computer programming Programming languages (Electronic computers) Textbooks Python (Computer program language)
- Resource Type:
- e-book
-
e-book
This book will teach you how to make graphical computer games in the Python programming language using the Pygame library.This book assumes you know a little bit about Python or programming in general. If you don’t know how to program, you can learn by downloading the free book "Invent Your Own Computer Games with Python" from http://inventwithpython.com. Or you can jump right into this book and mostly pick it up along the way. This book is for the intermediate programmer who has learned what variables and loops are, but now wants to know, "What do actual game programs look like?" There was a long gap after I first learned programming but didn’t really know how to use that skill to make something cool. It’s my hope that the games in this book will give you enough ideas about how programs work to provide a foundation to implement your own games.
- Subjects:
- Computing
- Keywords:
- Computer programming Computer games Python (Computer program language) Textbooks Programming languages (Electronic computers)
- Resource Type:
- e-book
-
e-book
"A Byte of Python" is a free book on programming using the Python language. It serves as a tutorial or guide to the Python language for a beginner audience. If all you know about computers is how to save text files, then this is the book for you.
- Subjects:
- Computing
- Keywords:
- Computer programming Programming languages (Electronic computers) Textbooks Python (Computer program language)
- Resource Type:
- e-book
-
e-book
I never seemed to find the perfect data-oriented Python book for my course, so I set out to write just such a book. Luckily at a faculty meeting three weeks before I was about to start my new book from scratch over the holiday break, Dr. Atul Prakash showed me the Think Python book which he had used to teach his Python course that semester. It is a well-written Computer Science text with a focus on short, direct explanations and ease of learning.The overall book structure has been changed to get to doing data analysis problems as quickly as possible and have a series of running examples and exercises about data analysis from the very beginning. Chapters 2–10 are similar to the Think Python book, but there have been major changes. Number-oriented examples and exercises have been replaced with data- oriented exercises. Topics are presented in the order needed to build increasingly sophisticated data analysis solutions. Some topics like try and except are pulled forward and presented as part of the chapter on conditionals. Functions are given very light treatment until they are needed to handle program complexity rather than introduced as an early lesson in abstraction. Nearly all user-defined functions have been removed from the example code and exercises outside of Chapter 4. The word “recursion”1 does not appear in the book at all. In chapters 1 and 11–16, all of the material is brand new, focusing on real-world uses and simple examples of Python for data analysis including regular expressions for searching and parsing, automating tasks on your computer, retrieving data across the network, scraping web pages for data, object-oriented programming, using web services, parsing XML and JSON data, creating and using databases using Structured Query Language, and visualizing data. The ultimate goal of all of these changes is a shift from a Computer Science to an Informatics focus is to only include topics into a first technology class that can be useful even if one chooses not to become a professional programmer.
- Subjects:
- Computing
- Keywords:
- Computer programming Programming languages (Electronic computers) Textbooks Python (Computer program language)
- Resource Type:
- e-book
-
e-book
Think DSP is an introduction to Digital Signal Processing in Python. The premise of this book (and the other books in the Think X series) is that if you know how to program, you can use that skill to learn other things. The author is writing this book because he thinks the conventional approach to digital signal processing is backward: most books (and the classes that use them) present the material bottom-up, starting with mathematical abstractions like phasors.
- Subjects:
- Electrical Engineering and Computing
- Keywords:
- Signal processing -- Digital techniques -- Data processing Python (Computer program language) Textbooks
- Resource Type:
- e-book
-
e-book
This book is about complexity science, data structures and algorithms, intermediate programming in Python, and the philosophy of science: Data structures and algorithms: A data structure is a collection that contains data elements organized in a way that supports particular operations. For example, a dictionary organizes key-value pairs in a way that provides fast mapping from keys to values, but mapping from values to keys is generally slower. An algorithm is a mechanical process for performing a computation. Designing efficient programs often involves the co-evolution of data structures and the algorithms that use them. For example, the first few chapters are about graphs, a data structure that is a good implementation of a graph---nested dictionaries---and several graph algorithms that use this data structure. Python programming: This book picks up where Think Python leaves off. I assume that you have read that book or have equivalent knowledge of Python. As always, I will try to emphasize fundmental ideas that apply to programming in many languages, but along the way you will learn some useful features that are specific to Python. Computational modeling: A model is a simplified description of a system that is useful for simulation or analysis. Computational models are designed to take advantage of cheap, fast computation. Philosophy of science: The models and results in this book raise a number of questions relevant to the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, holism and reductionism, and Bayesian epistemology. This book focuses on discrete models, which include graphs, cellular automata, and agent-based models. They are often characterized by structure, rules and transitions rather than by equations. They tend to be more abstract than continuous models; in some cases there is no direct correspondence between the model and a physical system. Complexity science is an interdisciplinary field---at the intersection of mathematics, computer science and physics---that focuses on these kinds of models. That's what this book is about.
- Subjects:
- Computing
- Keywords:
- Computational complexity Python (Computer program language) Textbooks
- Resource Type:
- e-book
-
e-book
Think Bayes is an introduction to Bayesian statistics using computational methods. The premise of this book, and the other books in the Think X series, is that if you know how to program, you can use that skill to learn other topics. Most books on Bayesian statistics use mathematical notation and present ideas in terms of mathematical concepts like calculus. This book uses Python code instead of math, and discrete approximations instead of continuous mathematics. As a result, what would be an integral in a math book becomes a summation, and most operations on probability distributions are simple loops. I think this presentation is easier to understand, at least for people with programming skills. It is also more general, because when we make modeling decisions, we can choose the most appropriate model without worrying too much about whether the model lends itself to conventional analysis. Also, it provides a smooth development path from simple examples to real-world problems.
- Subjects:
- Computing and Mathematics and Statistics
- Keywords:
- Bayesian statistical decision theory Python (Computer program language) Textbooks
- Resource Type:
- e-book
-
e-book
Think Python is a concise introduction to software design using the Python programming language. Intended for people with no programming experience, this book starts with the most basic concepts and gradually adds new material. Some of the ideas students find most challenging, like recursion and object-oriented programming, are divided into a sequence of smaller steps and introduced over the course of several chapters. This textbook has been used in classes atBard College,Olin College of Engineering, University of California, Santa Barbara, University of Maine, University of Northern Colorado.
- Subjects:
- Computing
- Keywords:
- Computer programming Python (Computer program language) Textbooks Programming languages (Electronic computers)
- Resource Type:
- e-book