Search Constraints
Number of results to display per page
Results for:
Affiliation
Delft University of Technology
Remove constraint Affiliation: Delft University of Technology
Search Results
-
Courseware
Water transport through pipes, pressure losses, (pressure) network design and building, pump selection, pumping stations, power supply, quantitative reliability, operation and maintenance. Studie goals: The student will acquire the ability to: design a transportation network, identify critical situations for water hammer design a pumping station in terms of capacity, lay out and operation of pumps analyse a lopped and branched pipe system, analyse a drinking water system with ALEID or EPANET and a sewer system with HYDROWORKS, identify critical areas for water quality deterioration, analyse the reliability of a drinking water system and identify critical elements as well as formulate solutions to these points.
- Subjects:
- Building Services Engineering and Hydraulic Engineering
- Keywords:
- Water quality management Drinking water Pipelines Pumping stations Hydraulic structures -- Design construction
- Resource Type:
- Courseware
-
Courseware
Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products. The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course. Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R. This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.
- Subjects:
- Environmental Engineering
- Keywords:
- Engineering design Industrial management -- Environmental aspects Sustainable design Remanufacturing
- Resource Type:
- Courseware
-
Courseware
Around the world, major challenges of our time such as population growth and climate change are being addressed in cities. Here, citizens play an important role amidst governments, companies, NGOs and researchers in creating social, technological and political innovations for achieving sustainability. Citizens can be co-creators of sustainable cities when they engage in city politics or in the design of the urban environment and its technologies and infrastructure. In addition, citizens influence and are influenced by the technologies and systems that they use every day. Sustainability is thus a result of the interplay between technology, policy and people’s daily lives. Understanding this interplay is essential for creating sustainable cities. In this MOOC, we zoom in on Amsterdam, Beijing, Ho Chi Minh City, Nairobi, Kampala and Suzhou as living labs for exploring the dynamics of co-creation for sustainable cities worldwide. We will address topics such as participative democracy and legitimacy, ICTs and big data, infrastructure and technology, and SMART technologies in daily life. This global scope will be used to illustrate why specific forms of co-creation are preferred in specific urban contexts. Moreover, we will investigate and compare these cities on three themes that have a vast effect on city life: - Water and waste - Energy, air, food and mobility - Green spaces and food This MOOC will teach you about the dynamics of co-creation and the key principles of citizens interacting with service providing companies, technology and infrastructure developers, policy makers and researchers. You will gain an understanding of major types of co-creation and their interdependency with their socio-technical and political contexts. You will become equipped to indicate how you can use co-creation to develop innovative technologies, policy arrangements or social practices for a sustainable city in your own community. You will demonstrate this by developing an action plan, research proposal or project idea. Basic knowledge of sustainability in urban settings, urban environmental technology and urban management is assumed.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Sustainable development Sustainable development -- Citizen participation City planning
- Resource Type:
- Courseware
-
Courseware
The course will discuss the objectives and functions of water management systems for irrigation and drainage purposes. Analysing system requirements in terms of technical engineering constraints, management possibilities and water users (wishes and options) is central. This includes the design and operation of regulation structures, dams, reservoirs, weirs and conveyance systems; balancing water supply and water requirements in time and space is a main focus of analysis too.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Drainage -- Management Irrigation -- Management
- Resource Type:
- Courseware
-
Courseware
Water is essential for life on earth and of crucial importance for society. Also within our climate water plays a major role. The natural cycle of ocean to atmosphere, by precipitation back to earth and by rivers and aquifers to the oceans has a decisive impact on regional and global climate patterns. This course will cover six main topics: 1. Global water cycle. In this module you will learn to explain the different processes of the global water cycle. 2. Water systems. In this module you will learn to describe the flows of water and sand in different riverine, coastal and ocean systems. 3. Water and climate change. In this module you will learn to identify mechanisms of climate change and you will learn to explain the interplay of climate change, sea level, clouds, rainfall and future weather. 4. Interventions. In this module you will learn to explain why, when and which engineering interventions are needed in rivers, coast and urban environment. 5. Water resource management. In this module you will learn to explain why water for food and water for cities are the main challenges in water management and what the possibilities and limitations of reservoirs and groundwater are to improve water availability. 6. Challenges. In this module you will learn to explain the challenges in better understanding and adapting to the impact of climate change on water for the coming 50 years.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Hydrologic cycle Water-supply -- Effect of global warming on Water-supply -- Management
- Resource Type:
- Courseware
-
Courseware
Learn about urban water services, focusing on conventional technologies for drinking water treatment. This course focuses on conventional technologies for drinking water treatment. Unit processes, involved in the treatment chain, are discussed as well as the physical, chemical and biological processes involved. The emphasis is on the effect of treatment on water quality and the dimensions of the unit processes in the treatment chain. After the course one should be able to recognise the process units, describe their function, and make basic calculations for a preliminary design of a drinking water treatment plant.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Water treatment plants -- Design construction Drinking water -- Purification Water-supply
- Resource Type:
- Courseware
-
Courseware
The lectures introduce a number of topics that are important for IWRM and the modeling exercise. The lectures introduce water management issues in the Netherlands, Rhine Basin, and Volta Basin. The role-play is meant to experience some of the social processes that, together with technical knowledge, determine water management.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water resources development Netherls Water-supply -- Management Water-supply
- Resource Type:
- Courseware
-
Courseware
The course deals with the principles of hydrology of catchment areas, rivers and deltas.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Watersheds Estuaries Saline water barriers Hydrology Floods Rivers
- Resource Type:
- Courseware
-
Courseware
This course discusses the requirement, interpretation, methods and design of hydrological measurements. Following topics are covered: Accuracy requirements of measurements and error propagation: Related to a problem the required accuracy of measurements and the consequences for accuracy in the final result are discussed. Different types of errors are handled. Propagation of errors; for dependent and independent measurements, from mathematical relations and regression is demonstrated. Recapitulated is the theory of regression and correlation. Interpretation of measurements, data completion: By standard statistical methods screening of measured data is performed; double mass analysis, residual mass, simple rainfall-runoff modelling. Detection of trends; split record tests, Spearman rank tests. Methods to fill data gaps and do filtering on data series for noise reduction. Methods of hydrological measurements and measuring equipment: To determine quantitatively the most important elements in the hydrological cycle an overview is presented of most common hydrological measurements, measuring equipment and indirect determination methods i.e. for precipitation, evaporation, transpiration, river discharge and groundwater tables. Use, purpose and measurement techniques for tracers in hydrology is discussed. Advantages and disadvantages and specific condition/application of methods are discussed. Equipment is demonstrated and discussed. Areal distributed observation: Areal interpolation techniques of point observations; inverse distance, Thiessen, contouring, Kriging. Comparison of interpolation techniques and estimation of errors. Correlation analysis of areal distributed observation of rainfall. Design of measuring networks: Based on correlation characteristics from point measurements (e.g. rainfall stations) and accuracy requirements the design of a network of stations is demonstrated.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydrology -- Measurement Hydrology
- Resource Type:
- Courseware
-
Courseware
This course deals with the design of drinking water treatment plants. Theory is discussed and a design exercise is made. Study goals: Understanding of design aspects and design details.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Water treatment plants -- Design construction Drinking water -- Purification
- Resource Type:
- Courseware