Search Constraints
Number of results to display per page
Results for:
Affiliation
Delft University of Technology
Remove constraint Affiliation: Delft University of Technology
Language
English
Remove constraint Language: English
« Previous |
1 - 10 of 109
|
Next »
Search Results
-
Courseware
Offshore Hydromechanics includes the following modules: 1. Hydrostatics, static floating stability, constant 2-D potential flow of ideal fluids, and flows in real fluids. Introduction to resistance and propulsion of ships. Review of linear regular and irregular wave theory. 2. Analytical and numerical means to determine the flow around, forces on, and motions of floating bodies in waves. 3. Higher order potential theory and inclusion of non-linear effects in ship motions. Applications to motion of moored ships and to the determination of workability. 4. Interaction between the sea and sea bottom as well as the hydrodynamic forces and especially survival loads on slender structures.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrostatics Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
Design and construction of breakwaters and closure dams in estuaries and rivers. Functional requirements, determination of boundary conditions, spatial and constructional design and construction aspects of breakwaters and dams consisting of rock, sand and caissons. Overview and history of breakwater and closure dam construction. The general design principles of a breakwater and a closure dam. Determination of boundary conditions for dams and breakwaters, with special attention to the design frequency. Methods to determine the design wave height from wave statistics. Overview of other boundary conditions (geotechnical and hydraulic). Materials, quarries and rock properties. Various properties of the different types of dams and breakwaters, like stability of riprap in current and wave conditions, design of armour layer, natural rock and concrete elements. The use of caissons for breakwaters and closure dams. Computation of element size using classical formulae, partial safety coefficients and probabilistic methods. Plan and cross section of breakwaters. Practical examples of breakwaters and closure dams. Execution (marine or land based equipment) of the works. Failure mechanisms and (cost) optimisation. One-week exercise in which a group of two or three students has to design a breakwater and a closure dam.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Tidal basins Breakwaters -- Design construction River channels Dams -- Design construction
- Resource Type:
- Courseware
-
Courseware
Design of shoreline protection along rivers, canals and the sea; load on bed and shoreline by currents, wind waves and ship motion; stability of elements under current and wave conditions; stability of shore protection elements; design methods, construction methods. Flow: recapitulation of basics from fluid mechanics (flow, turbulence), stability of individual grains (sand, but also rock) in different type of flow conditions (weirs, jets), scour and erosion. Porous Media: basic equation, pressures and velocities on the stability on the boundary layer; groundwater flow with impermeable and semi-impermeable structures; granular filters and geotextiles. Waves: recapitulation of the basics of waves, focus on wave forces on the land-water boundary, specific aspects of ship induced waves, stability of elements under wave action (loose rock, placed blocks, impermeable layers) Design: overview of the various types of protections, construction and maintenance; design requirements, deterministic and probabilistic design; case studies, examples Materials and environment: overview of materials to be used, teraction with the aquatic environment, role of the land-water boundary as part of the ecosystem; environmentally sound shoreline design.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Shore protection Coast defenses
- Resource Type:
- Courseware
-
Courseware
The course “Fluid Flow, Heat and Mass Transfer,” course number ta3220, is third-year BSc course in the program of Applied Earth Sciences at Delft University of Technology. Students in this class have already taken a course in “Transport Phenomena” in the second year, and “Fluid Flow Heat and Mass Transfer” is designed as a follow-up to that class, with an emphasis on topics of importance in applied earth sciences, and in particular to Petroleum Engineering, groundwater flow and mining. In practice, however I start over again with first principles with this class, because the initial concepts of the shell balance are difficult for students to grasp and can always use a second time through. The course covers simple fluid mechanics problems (rectilinear flow) using shell balances, for Newtonian and power-law fluids and Bingham plastics. Turbulence for Newtonian fluids is covered in the context of friction factors for flow in pipes, flow around spheres and flow in packed beds. In heat transfer we start again with shell balances for solving simple steady-state conduction problems. Thereafter, special attention is given to unsteady and multidimensional heat conduction, since the equations are similar for unsteady flow in aquifers and petroleum reservoirs. The concepts of orthogonal conduction and superposition are emphasized, as well as ways to treat perfectly insulated boundaries. The final topic in heat transfer is estimation of heat-transfer coefficients in flow in tubes. Although no other geometries are treated explicitly, I hope students recognize certain principles they can apply to other situations. We cover mass transfer only lightly, and only as by analogy to heat conduction: unsteady diffusion (by analogy to unsteady head conduction) and mass transfer in tubes (by analogy to heat transfer in tubes).
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Heat -- Transmission Mass transfer Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
Introduction to seismic theory, measurements and processing of seismic data to final focussed image for geological and/or physical interpretation.This course deals with the most important aspects of reflection seismics. Theory of seismic waves, aspects of data acquisition (seismic sources, receivers and recorders), and of data processing (CMP processing, velocity analysis, stacking, migration) will be dealt with. The course will be supplemented by a practical of 6 afternoons where the students will see the most important data-processing steps via exercises (in Matlab).
- Subjects:
- Land Surveying and Geo-Informatics and Disaster Control and Management
- Keywords:
- Seismic prospecting Seismometry Earthquakes Seismic reflection method
- Resource Type:
- Courseware
-
Courseware
Basic principles: Hydrostatics, constant flow phenomena and waves The treated theory includes: - Archimedes’ Law, hydrostatic pressure - Stability computations for floating structures – including the effect of shifting loads, and partially filled fluid tanks - Potential flow basics, 2D potential flow elements, superposition principle - Real (viscous) flows, scaling laws, flow regimes - Fluid forces on structures, drag and lift, resistance and propulsion, wind and current loads - Linear wave theory in regular and irregular waves and wave statistics
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrodynamics Hydrostatics Fluid mechanics Waves
- Resource Type:
- Courseware
-
Courseware
Are you fascinated by Geosciences and willing to take the challenge of predicting the nature and behavior of the Earth subsurface? This is your course! In a voyage through the Earth, Geoscience: the Earth and its Resources will explore the Earth interior and the processes forming mountains and sedimentary basins. You will understand how the sediments are formed, transported, deposited and deformed. You will develop knowledge on the behavior of petroleum and water resources. The course has an innovative approach focusing on key fundamental processes, exploring their nature and quantitative interactions. It will be shown how this acquired knowledge is used to predict the nature and behavior of the Earth subsurface. This is your ideal first step as a future Geoscientists or professional to upgrade your knowledge in the domain of Earth Sciences.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Plate tectonics Earth sciences Petroleum -- Geology Geology Hydrology
- Resource Type:
- Courseware
-
Courseware
The Geology 1 course is composed of three parts dedicated to 1. general knowledge of the system Earth, 2. tools for the 3D geometric representation of geological objects and 3. methods and techniques for the recognition of fundamental minerals and rocks.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Rock mechanics Minerals Earth sciences Geology
- Resource Type:
- Courseware
-
Courseware
This course makes students familiar with the design of offshore wind farms in general and focuses on the foundation design in particular. The course is based on actual cases of real offshore wind farms that have been built recently or will be built in the near future.
- Subjects:
- Environmental Engineering
- Keywords:
- Renewable energy sources Wind power Offshore wind power plants
- Resource Type:
- Courseware
-
Courseware
How can we ensure the continuous supply of the increasingly scarce raw materials that are needed to make the products we use every day? In this course, we will look at the potential benefits of circular procurement and how recycling technologies and more efficient ways of collecting and recycling critical raw materials (CRMs) can make your business and production more resource resilient. A good number of the materials found in everyday products are now referred to as “critical”. This means that there is a risk of failure in their supply and that they are also critical in terms of economic importance. Many metals, for instance, are already critical or could become critical in the near future due to their limited availability and the growing demand for products worldwide. Think of the newest electronic products that contain critical metals such as gallium, which is used in integrated circuits; beryllium, used in electronic and telecommunications equipment and permanent magnets and germanium found in infra-red optics. Innovative product design and reusing, recycling and remanufacturing products can help to deal with a raw materials shortage. But this can only provide an integrated solution if we keep CRMs in the loop through smarter CRM management. The starting point is to identify CRMs in products. It is not always clear what materials are in which products. It is, therefore, necessary to keep all metals in the loop for as long as possible. Scarcity in the supply chain can not only damage businesses but also negatively impact economic development and the environment. For this reason, the course will also discuss environmental issues and electric and electronic waste regulations. This course will be of value to a wide range of professionals working in or interested in this field. These include professionals involved in producing products containing CRMs (such as electronics) as well as local or national government officials tasked with organizing waste management and recycling for these products. Students interested in the field of waste management will also find this course helpful for their studies in electronics, industrial design, and industrial ecology.
- Subjects:
- Environmental Engineering
- Keywords:
- Refuse refuse disposal Waste products Recycling (Waste etc.) Raw materials Strategic materials
- Resource Type:
- Courseware