Search Constraints
Number of results to display per page
Results for:
Affiliation
Delft University of Technology
Remove constraint Affiliation: Delft University of Technology
Search Results
-
Courseware
The technologies used to produce solar cells and photovoltaic modules are advancing to deliver highly efficient and flexible solar panels. In this course you will explore the main PV technologies in the current market. You will gain in-depth knowledge about crystalline silicon based solar cells (90% market share) as well as other up and coming technologies like CdTe, CIGS and Perovskites. This course provides answers to the questions: How are solar cells made from raw materials? Which technologies have the potential to be the major players for different applications in the future?
- Subjects:
- Electrical Engineering
- Keywords:
- Solar cells Photovoltaic power systems Photovoltaic power generation Silicon solar cells
- Resource Type:
- Courseware
-
Courseware
The purpose of this course is to learn how to specify the behavior of embedded systems and to experience the design of a provably correct system. In this course you will learn how to formally specify requirements and to prove (or disprove) them on the behaviour. With a practical assignment you will experience how to apply the techniques in practice.
- Subjects:
- Computing
- Keywords:
- Embedded computer systems
- Resource Type:
- Courseware
-
Courseware
The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.
- Subjects:
- Electrical Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic cells Photovoltaic power generation
- Resource Type:
- Courseware
-
Courseware
The course gives an overview of different types of electrical machines and drives. Different types of mechanica loads are discussed. Maxwell’s equations are applied to magnetic circuits including permanent magnets. DC machines, induction machines, synchronous machines, switched reluctance machines, brushless DC machines and single-phase machines are discussed with the power electronic converters used to drive them.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric driving Electric machinery
- Resource Type:
- Courseware
-
Courseware
In the third edition of Solar Energy, you will learn to design a complete photovoltaic system. This course introduces the technology that converts solar energy into electricity, heat and solar fuels with a main focus on electricity generation. Photovoltaic (PV) devices are presented as advanced semiconductor devices that deliver electricity directly from sunlight. The emphasis is on understanding the working principle of a solar cell, fabrication of solar cells, PV module construction and the design of a PV system. You will gain a greater understanding of the principles of the photovoltaic conversion- the conversion of light into electricity. This course explores the advantages, limitations and challenges of different solar cell technologies, such as crystalline silicon solar cell technology, thin film solar cell technologies and the latest novel solar cell concepts as studied on lab-scale. We will discuss the specifications of solar modules and demonstrate how to design a complete solar system for any particular application.
- Subjects:
- Electrical Engineering
- Keywords:
- Solar cells Solar energy Photovoltaic power systems
- Resource Type:
- Courseware
-
Courseware
Broadly speaking, functional programming is a style of programming in which the primary method of computation is the application of functions to arguments. Among other features, functional languages offer a compact notation for writing programs, powerful abstraction methods for structuring programs, and a simple mathematical basis that supports reasoning about programs. Functional languages represent the leading edge of programming language design, and the primary setting in which new programming concepts are introduced and studied. All contemporary programming languages such as Hack/PHP, C#, Visual Basic, F#, C++, JavaScript, Python, Ruby, Java, Scala, Clojure, Groovy, Racket, … support higher-order programming via the concept of closures or lambda expressions. This course will use Haskell as the medium for understanding the basic principles of functional programming. While the specific language isn’t all that important, Haskell is a pure functional language so it is entirely appropriate for learning the essential ingredients of programming using mathematical functions. It is also a relatively small language, and hence it should be easy for you to get up to speed with Haskell. Once you understand the Why, What and How that underlies pure functional programming and learned to “think like a fundamentalist”, we will apply the concepts of functional programming to “code like a hacker” in mainstream programming languages, using Facebook’s novel Hack language as our main example. This course assumes no prior knowledge of functional programming, but assumes you have at least one year of programming experience in a regular programming language such as Java, .NET, Javascript or PHP.
- Subjects:
- Computing
- Keywords:
- Haskell (Computer program language) Functional programming (Computer science)
- Resource Type:
- Courseware
-
Courseware
Are you ready to leave the sandbox and go for the real deal? Have you followed Data Analysis: Take It to the MAX() and Data Analysis: Visualization and Dashboard Design and are ready to carry out more robust data analysis? In this project-based course you will engage in a real data analysis project that simulates the complexity and challenges of data analysts at work. Testing, data wrangling, Pivot Tables, sparklines? Now that you have mastered them you are ready to apply them all and carry out an independent data analysis. For your project, you will pick one raw dataset out of several options, which you will turn into a dashboard. You will begin with a business question that is related to the dataset that you choose. The datasets will touch upon different business domains, such as revenue management, call-center management, investment, etc.
- Subjects:
- Computing
- Keywords:
- Visual analytics Information visualization Industrial management -- Data processing Dashboards (Management information systems)
- Resource Type:
- Courseware
-
Courseware
A transition to sustainable energy is needed for our climate and welfare. In this engineering course, you will learn how to assess the potential for energy reduction and the potential of renewable energy sources like wind, solar and biomass. You’ll learn how to integrate these sources in an energy system, like an electricity network and take an engineering approach to look for solutions and design a 100% sustainable energy system.
- Subjects:
- Electrical Engineering
- Keywords:
- Solar energy Renewable energy sources Biomass energy Wind power Sustainable development
- Resource Type:
- Courseware
-
Courseware
In electrical engineering, solid-state materials and the properties play an essential role. A thorough understanding of the physics of metals, insulators and semiconductor materials is essential for designing new electronic devices and circuits. After short introduction of the IC fabrication process, the course starts with the crystallography. This will be followed by the basic principle of the quantum mechanics, the sold-state physics, band-structure and the relation with electrical properties of the solid-state materials. When the material physics has been throughly understood, the physics of the semiconductor device follows quite naturally and can be understood quickly and efficiently.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Semiconductors Solid state physics Matter -- Properties
- Resource Type:
- Courseware
-
Courseware
The course treats: the discrete Fourier Transform (DFT), the Fast Fourier Transform (FFT), their application in OFDM and DSL; elements of estimation theory and their application in communications; linear prediction, parametric methods, the Yule-Walker equations, the Levinson algorithm, the Schur algorithm; detection and estimation filters; non-parametric estimation; selective filtering, application to beamforming.
- Subjects:
- Electrical Engineering
- Keywords:
- Signal processing
- Resource Type:
- Courseware