Search Constraints
Number of results to display per page
Results for:
Affiliation
Delft University of Technology
Remove constraint Affiliation: Delft University of Technology
Year
2016
Remove constraint Year: 2016
1 - 8 of 8
Search Results
-
Courseware
The Geology 1 course is composed of three parts dedicated to 1. general knowledge of the system Earth, 2. tools for the 3D geometric representation of geological objects and 3. methods and techniques for the recognition of fundamental minerals and rocks.
- Subjects:
- Environmental Sciences and Land Surveying and Geo-Informatics
- Keywords:
- Rock mechanics Minerals Earth sciences Geology
- Resource Type:
- Courseware
-
Courseware
Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency. Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques. The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.
- Subjects:
- Building Services Engineering, Chemistry, and Environmental Engineering
- Keywords:
- Storage batteries Renewable energy sources Hydrogen as fuel Energy storage Hydrogen -- Storage
- Resource Type:
- Courseware
-
Courseware
Companies and governments have to decide upon technological strategies, i.e. which products are to be developed and which processes and infrastructures are required for the future. Several tools to consider technological strategies are dealt with in this course.
- Subjects:
- Technology
- Keywords:
- Sustainable development Technological forecasting Technological innovations -- Forecasting Technological innovations -- Management
- Resource Type:
- Courseware
-
Courseware
In electrical engineering, solid-state materials and the properties play an essential role. A thorough understanding of the physics of metals, insulators and semiconductor materials is essential for designing new electronic devices and circuits. After short introduction of the IC fabrication process, the course starts with the crystallography. This will be followed by the basic principle of the quantum mechanics, the sold-state physics, band-structure and the relation with electrical properties of the solid-state materials. When the material physics has been throughly understood, the physics of the semiconductor device follows quite naturally and can be understood quickly and efficiently.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Semiconductors Solid state physics Matter -- Properties
- Resource Type:
- Courseware
-
Courseware
The lectures are at a beginning graduate level and assume only basic familiarity with Functional Analysis and Probability Theory. Topics covered include: Random variables in Banach spaces: Gaussian random variables, contraction principles, Kahane-Khintchine inequality, Anderson’s inequality. Stochastic integration in Banach spaces I: γ-Radonifying operators, γ-boundedness, Brownian motion, Wiener stochastic integral. Stochastic evolution equations I: Linear stochastic evolution equations: existence and uniqueness, Hölder regularity. Stochastic integral in Banach spaces II: UMD spaces, decoupling inequalities, Itô stochastic integral. Stochastic evolution equations II: Nonlinear stochastic evolution equations: existence and uniqueness, Hölder regularity.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Stochastic partial differential equations Evolution equations
- Resource Type:
- Courseware
-
Courseware
Quantum Information Processing aims at harnessing quantum physics to conceive and build devices that could dramatically exceed the capabilities of today’s “classical” computation and communication systems. In this course, we will introduce the basic concepts of this rapidly developing field.
- Subjects:
- Physics
- Keywords:
- Quantum computing Quantum theory -- Data processing
- Resource Type:
- Courseware
-
Courseware
Mesoscopic physics is the area of Solid State physics that covers the transition regime between macroscopic objects and the microscopic, atomic world.The main goal of the course is to introduce the physical concepts underlying the phenomena in this field.
- Subjects:
- Physics
- Keywords:
- Mesoscopic phenomena (Physics)
- Resource Type:
- Courseware
-
Courseware
Thermal conductivity, the Wiedemann-Franz law and the collision integral for electron-electron scattering. This course is about the electronic properties of materials and contains lectures about scattering, transport in metals, phonons and superconductivity.
- Subjects:
- Physics
- Keywords:
- Materials -- Electric properties Thermoelectricity Superconductivity
- Resource Type:
- Courseware