Search Constraints
Number of results to display per page
Results for:
Affiliation
Massachusetts Institute of Technology
Remove constraint Affiliation: Massachusetts Institute of Technology
« Previous |
1 - 10 of 25
|
Next »
Search Results
-
Video
This channel contains the complete 8.01x (Physics I: Classical Mechanics), 8.02x (Physics II: Electricity and Magnetism) and 8.03 (Physics III: Vibrations and Waves) lectures as presented by Walter Lewin in the fall of 1999, spring of 2002 and fall of 2004. The 8.01x and 8.02x edX lectures are high resolution (480p) versions of the more commonly seen OCW versions. Some edits were also made by Lewin. 8.03 is the OCW version, also in a 480p resolution. Links to lecture notes, assignments/solutions and exams/solutions are added. Playlists with Help Sessions for 8.01x, 8.02x and 8.03 are also available. They are "mini lectures". The problems discussed in these videos should be apparent after watching the first few minutes. Other playlists show Lewin in various appearances and his Bi-Weekly Physics problems/solutions and several excellent lectures by Feynman and others.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Waves Vibration Magnetism Mechanics Electricity Physics
- Resource Type:
- Video
-
Courseware
Vibrations and waves are everywhere. If you take any system and disturb it from a stable equilibrium, the resultant motion will be waves and vibrations. Think of a guitar string—pluck the string, and it vibrates. The sound waves generated make their way to our ears, and we hear the string’s sound. Our eyes see what’s happening because they receive the electromagnetic waves of the light reflected from the guitar string, so that we can recognize the beautiful sinusoidal waves on the string.
- Subjects:
- Physics
- Keywords:
- Waves Vibration
- Resource Type:
- Courseware
-
Courseware
This course provides an introduction to continuum mechanics and material modelling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modelling and design of a large range of engineering materials.
- Subjects:
- Physics
- Keywords:
- Continuum mechanics Solid state physics Mechanics
- Resource Type:
- Courseware
-
Courseware
This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.
- Subjects:
- Physics
- Keywords:
- Optics Geometrical optics
- Resource Type:
- Courseware
-
Courseware
This subject deals primarily with the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds.
- Subjects:
- Chemistry
- Keywords:
- Carbonyl compounds Molecular structure Chemistry Organic Aromatic compounds
- Resource Type:
- Courseware
-
Courseware
This course is an advanced treatment of biochemical mechanisms that underlie biological processes. Topics include macromolecular machines such as the ribosome, the proteasome, fatty acid synthases as a paradigm for polyketide synthases and non-ribosomal polypeptide synthases, and polymerases. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes.
- Subjects:
- Biochemistry and Biology
- Keywords:
- Biochemistry
- Resource Type:
- Courseware
-
Courseware
The MIT Biology Department core Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. The focus of 7.013 is on genomic approaches to human biology, including neuroscience, development, immunology, tissue repair and stem cells, tissue engineering, and infectious and inherited diseases, including cancer.
- Subjects:
- Biology
- Keywords:
- Human biology Biology
- Resource Type:
- Courseware
-
Courseware
This seminar will be a scientific exploration of the food we eat and enjoy. Each week we shall have a scientific edible experiment that will explore a specific food topic. This will be a hands-on seminar with mandatory attendance of at least 85%. Topics include, but are not limited to, what makes a good experiment, cheese making, joys of tofu, food biochemistry, the science of spice, what is taste?
- Subjects:
- Chemistry and Food Science
- Keywords:
- Food -- Composition Chemical reactions Science -- Experiments
- Resource Type:
- Courseware
-
Courseware
This course is focused on physical understanding of materials processing, and the scaling laws that govern process speed, volume, and material quality. In particular, this course will cover the transport of heat and matter as these topics apply to materials processing.
- Subjects:
- Mechanical Engineering and Materials Science
- Keywords:
- Mass transfer Heat -- Transmission Transport theory Manufacturing processes Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
This course explores cutting-edge neurotechnology that is essential for advances in all aspects of neuroscience, including improvements in existing methods as well as the development, testing and discussion of completely new paradigms. Readings and in-class sessions cover the fields of electrophysiology, light microscopy, cellular engineering, optogenetics, electron microscopy, MRI / fMRI, and MEG / EEG.
- Subjects:
- Biomedical Engineering and Biology
- Keywords:
- Neurotechnology (Bioengineering)
- Resource Type:
- Courseware
- « Previous
- Next »
- 1
- 2
- 3