Search Constraints
Number of results to display per page
Results for:
Keywords
Data mining
Remove constraint Keywords: Data mining
1 - 8 of 8
Search Results
-
MOOC
Despite the recent increase in computing power and access to data over the last couple of decades, our ability to use the data within the decision making process is either lost or not maximized at all too often, we don't have a solid understanding of the questions being asked and how to apply the data correctly to the problem at hand.
This course has one purpose, and that is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand.
Accordingly, in this course, you will learn:
- The major steps involved in tackling a data science problem.
- The major steps involved in practicing data science, from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment.
- How data scientists think!
- Course related:
- LGT6801 Guided Study in Logistics I, LGT6202: Stochastic Models and Decision under Uncertainty, LGT6802 Guided Study in Logistics II, and LGT6803: Guided Study in Logistics III
- Subjects:
- Business Information Technology and Computing
- Keywords:
- Electronic data processing Data mining Problem solving
- Resource Type:
- MOOC
-
e-book
A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and introductory Python programming using open-source Jupyter Notebooks. This engaging read will allow any dedicated learner to build the skills necessary to contribute to the Data Science revolution, regardless of background.
- Subjects:
- Computing
- Keywords:
- Data mining Computer science Artificial intelligence Textbooks
- Resource Type:
- e-book
-
Video
Statistics, Machine Learning and Data Science can sometimes seem like very scary topics, but since each technique is really just a combination of small and simple steps, they are actually quite simple. My goal with StatQuest is to break down the major methodologies into easy to understand pieces. That said, I don't dumb down the material. Instead, I build up your understanding so that you are smarter.
- Course related:
- HTI34016 Introduction to Clinical Research
- Subjects:
- Computing and Mathematics and Statistics
- Keywords:
- Statistics Mathematical analysis Data mining Machine learning
- Resource Type:
- Video
-
MOOC
Data science has critical applications across most industries, and is one of the most in-demand careers in computer science. Data scientists are the detectives of the big data era, responsible for unearthing valuable data insights through analysis of massive datasets. And just like a detective is responsible for finding clues, interpreting them, and ultimately arguing their case in court, the field of data science encompasses the entire data life cycle. That starts with capturing lots of raw data using data collection techniques, and then building and maintaining data pipelines and data warehouses that efficiently “clean” the data and make it accessible for analysis at scale. This data infrastructure allows data scientists to efficiently process datasets using data mining and data modeling skills, as well as analyze these outputs with sophisticated techniques like predictive analysis and qualitative analysis. Finally, these findings must be presented using data visualization and data reporting skills to help business decision makers. Depending on the size of the company, data scientists may be responsible for this entire data life cycle, or they might specialize in a particular portion of the life cycle as part of a larger data science team
- Subjects:
- Computing
- Keywords:
- Machine learning Data mining Big data
- Resource Type:
- MOOC
-
MOOC
This course covers a wide variety of topics in machine learning and statistical modeling. While mathematical methods and theoretical aspects will be covered, the primary goal is to provide students with the tools and principles needed to solve the data science problems found in practice. This course also serves as a foundation on which more specialized courses and further independent study can build. This course was designed as part of the core curriculum for the Center for Data Science's Masters degree in Data Science. Other interested students who satisfy the prerequisites are welcome to take the class as well. Note that class is intended as a continuation of DS-GA-1001 Intro to Data Science, which covers some important, fundamental data science topics that may not be explicitly covered in this DS-GA class (e.g. data cleaning, cross-validation, and sampling bias).
- Course related:
- LGT6801 Guided Study in Logistics I
- Subjects:
- Computing and Mathematics and Statistics
- Keywords:
- Big data Data mining Machine learning Mathematical statistics -- Data processing
- Resource Type:
- MOOC
-
Others
Discover the most effective way to improve your models.
- Subjects:
- Computing
- Keywords:
- Machine learning Data mining Python (Computer program language)
- Resource Type:
- Others
-
Presentation
This video was recorded at COIN / PlanetData Winter School on Knowledge Technologies for Complex Business Environments, Ljubljana 2011. Organized by COIN FP7 Integrated Project and PlanetData FP7 Network of Excellence, the school seeks to bring together students, scholars and researchers from industry in order to foster collaboration and interoperability with innovative services and project large-scale data management in business environments. The main topics of the winter school are: Interoperability and collaboration models and solutions, Enterprise interoperability and collaboration services, Innovative knowledge and semantically powered technologies, Knowledge process and context modelling, Pro-active knowledge tools, Large scale analytics and reasoning tools, Business cases and real case studies. Detailed information can be found here.
- Subjects:
- Management and Computing
- Keywords:
- Data mining Real-time data processing
- Resource Type:
- Presentation
-
Presentation
This video was recorded at COIN / ACTIVE Summer School on Advanced Technologies for Knowledge Intensive Networked Organizations, Aachen 2010. Part 1. Context Computing. Context is used as a term for packaging information for a particular need. A criterion for selecting or prioritization information from a broader pool of information could be called contextual model. Search can be contextual: http://searchpoint.ijs.si. The relevance of Context in computing seems to be growing. Many application areas see an opportunity in extending its value by introducing "context sensitivity". More details do to be found in ISWC2006 Tutorial on "context sensitivity": http://videolectures.net/iswc06_athens_ga/ Part 2. Text Mining & Light Weight Semantics. Videolectures discusses the following topics: - levels of text representations - modeling the data (Support Vector Machine) - classification into large taxonomies (DMoz) - visual & contextual search (Search Point) - multilingual search - news bias, news visualization - text enrichment (Enrycher) - knowledge based summarization - question answering (AnswerArt) - Cyc knowledge base and reasoning
- Subjects:
- Management and Computing
- Keywords:
- Data mining Information resources management Business -- Data Processing Management information systems
- Resource Type:
- Presentation