Search Constraints
Number of results to display per page
Results for:
Year
2016
Remove constraint Year: 2016
1 - 8 of 8
Search Results
-
Video
As we keep pumping carbon dioxide into the atmosphere, more of it is dissolving in the oceans, leading to drastic changes in the water's chemistry. Triona McGrath researches this process, known as ocean acidification, and in this talk she takes us for a dive into an oceanographer's world. Learn more about how the "evil twin of climate change" is impacting the ocean -- and the life that depends on it.
- Subjects:
- Environmental Sciences and Chemistry
- Keywords:
- Marine pollution Oceanography
- Resource Type:
- Video
-
e-book
"Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through a collaborative publishing partnership between OpenStax and the University of Connecticut and UConn Undergraduate Student Government Association. This title is an adaptation of the OpenStax Chemistry text and covers scope and sequence requirements of the two-semester general chemistry course. Reordered to fit an atoms first approach, this title introduces atomic and molecular structure much earlier than the traditional approach, delaying the introduction of more abstract material so students have time to acclimate to the study of chemistry. Chemistry: Atoms First also provides a basis for understanding the application of quantitative principles to the chemistry that underlies the entire course."--Open Textbook Library.
-
e-book
This text is intended to provide an in-depth introduction to the key ideas in chemistry. We have designed the book to show how these ideas are developed from simple to complex systems and how they relate to each other. We consider three ideas central to an understanding of chemistry: the structure of matter, the properties of matter, and the energy changes involved in the reorganization of matter; all are connected by the interactions or forces that cause matter to interact. We aim to provide compelling reasons why you will find yourself wanting to learn chemistry and to illustrate what you will be able to do with this knowledge once you have learned it.
- Subjects:
- Chemistry
- Keywords:
- Chemistry Organic Chemistry Textbooks
- Resource Type:
- e-book
-
e-book
As currently taught in the United States, introductory courses in analytical chemistry emphasize quantitative (and sometimes qualitative) methods of analysis along with a heavy dose of equilibrium chemistry. Analytical chemistry, however, is much more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements. My goal in preparing this textbook is to find a more appropriate balance between theory and practice, between “classical” and “modern” analytical methods, between analyzing samples and collecting samples and preparing them for analysis, and between analytical methods and data analysis. There is more material here than anyone can cover in one semester; it is my hope that the diversity of topics will meet the needs of different instructors, while, perhaps, suggesting some new topics to cover.
- Subjects:
- Chemistry
- Keywords:
- Chemistry Analytic -- Quantitative Textbooks
- Resource Type:
- e-book
-
e-book
The traditional approach to teaching Organic Chemistry, taken by most of the textbooks that are currently available, is to focus primarily on the reactions of laboratory synthesis, with much less discussion - in the central chapters, at least - of biological molecules and reactions. This is despite the fact that, in many classrooms, a majority of students are majoring in Biology or Health Sciences rather than in Chemistry, and are presumably taking the course in order to learn about the chemistry that takes place in living things. In an effort to address this disconnect, I have developed a textbook for a two-semester, sophomore-level course in Organic Chemistry in which biological chemistry takes center stage. For the most part, the text covers the core concepts of organic structure, structure determination, and reactivity in the standard order. What is different is the context: biological chemistry is fully integrated into the explanation of central principles, and as much as possible the in-chapter and end-of-chapter problems are taken from the biochemical literature. Many laboratory synthesis reactions are also covered, generally in parallel with their biochemical counterparts - but it is intentionally the biological chemistry that comes first.
- Subjects:
- Chemistry
- Keywords:
- Chemistry Organic Textbooks
- Resource Type:
- e-book
-
e-book
The traditional approach to teaching Organic Chemistry, taken by most of the textbooks that are currently available, is to focus primarily on the reactions of laboratory synthesis, with much less discussion - in the central chapters, at least - of biological molecules and reactions. This is despite the fact that, in many classrooms, a majority of students are majoring in Biology or Health Sciences rather than in Chemistry, and are presumably taking the course in order to learn about the chemistry that takes place in living things.In an effort to address this disconnect, I have developed a textbook for a two-semester, sophomore-level course in Organic Chemistry in which biological chemistry takes center stage. For the most part, the text covers the core concepts of organic structure, structure determination, and reactivity in the standard order. What is different is the context: biological chemistry is fully integrated into the explanation of central principles, and as much as possible the in-chapter and end-of-chapter problems are taken from the biochemical literature. Many laboratory synthesis reactions are also covered, generally in parallel with their biochemical counterparts - but it is intentionally the biological chemistry that comes first.
- Subjects:
- Chemistry
- Keywords:
- Chemistry Organic Textbooks
- Resource Type:
- e-book
-
e-book
This resource was created by Lisa Nichols (chemistry faculty at Butte Community College in Northern California) as a result of an academic sabbatical leave in the Fall-2015 to Spring 2016 term. The target audience are undergraduate students in organic chemistry. In this resource you will find theory and procedures on the main organic lab techniques (chromatography, crystallization, extraction, distillation) as well as general concepts on how to set up and heat apparatuses (see the Table of Contents tab for a more complete listing of topics). All procedures are accompanied by step-by-step pictures, and graphics are heavily utilized throughout the resource.
- Subjects:
- Laboratory Techniques and Safety and Chemistry
- Keywords:
- Chemistry Organic Textbooks
- Resource Type:
- e-book
-
Courseware
Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency. Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques. The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.
- Subjects:
- Building Services Engineering, Chemistry, and Environmental Engineering
- Keywords:
- Storage batteries Renewable energy sources Hydrogen as fuel Energy storage Hydrogen -- Storage
- Resource Type:
- Courseware