Search Constraints
Number of results to display per page
Results for:
Bioinformatics and Data Analysis
Remove constraint Bioinformatics and Data Analysis
1 - 4 of 4
Search Results
-
e-book
The focus of this book is on using quantitative research methods to test hypotheses and build theory in political science, public policy and public administration. It is designed for advanced undergraduate courses, or introductory and intermediate graduate-level courses. The first part of the book introduces the scientific method, then covers research design, measurement, descriptive statistics, probability, inference, and basic measures of association. The second part of the book covers bivariate and multiple linear regression using the ordinary least squares, the calculus and matrix algebra that are necessary for understanding bivariate and multiple linear regression, the assumptions that underlie these methods, and then provides a short introduction to generalized linear models.The book fully embraces the open access and open source philosophies. The book is freely available in the SHAREOK repository; it is written in R Markdown files that are available in a public GitHub repository; it uses and teaches R and RStudio for data analysis, visualization and data management; and it uses publically available survey data (from the Meso-Scale Integrated Socio-geographic Network) to illustrate important concepts and methods. We encourage students to download the data, replicate the examples, and explore further! We also encourage instructors to download the R Markdown files and modify the text for use in different courses.
-
e-book
Learning Statistics with R covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software. The book discusses how to get started in R as well as giving an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book.
- Subjects:
- Psychology and Mathematics and Statistics
- Keywords:
- Statistics -- Computer programs R (Computer program language) Textbooks Statistics Social sciences -- Statistical methods
- Resource Type:
- e-book
-
Open (Access) Journal-Article
Short discharge time from hospitals increases both bed availability and patients and families satisfaction. In this study, the Six Sigma process improvement methodology was applied to reduce patients discharge time in a cancer treatment hospital. Data on the duration of all activities, from the physician signing the discharge form to the patient leaving the treatment room, were collected through patient shadowing. These data were analyzed using detailed process maps and cause-and-effect diagrams. Fragmented and unstandardized processes and procedures and a lack of communication among the stakeholders were among the leading causes of long discharge times. Categorizing patients by their needs enabled better design of the discharge processes. Discrete event simulation was utilized as a decision support tool to test the effect of the improvements under different scenarios. Simplified and standardized processes, improved communications, and system-wide management are among the proposed improvements, which reduced patient discharge time by 54 from 216 minutes. Cultivating the necessary ownership through stakeholder analysis is an essential ingredient of sustainable improvement efforts.
- Subjects:
- Health Sciences and Management
- Keywords:
- Hospitals -- Administration Process control Six sigma (Quality control stard)
- Resource Type:
- Open (Access) Journal-Article
-
-
Courseware
Systematic reviews and meta-analyses are useful for evidence-based clinical and public health practice. The widespread and growing application of systematic review methods for the synthesis of evidence on important or pressing research and clinical questions underscore the need for health-care professionals to understand and critique this research design. This course will provide a detailed description of the systematic review process, discuss the strengths and limitations of the method, and provide step-by-step guidance on how to actually perform a systematic review and meta-analysis. Specific topics to be covered include: formulation of the review question, searching of literature, quality assessment of studies, data extraction, meta-analytic methods, assessment of heterogeneity and report writing. The course will also cover statistical issues such as selection of statistical models for meta-analysis, practical examples of fixed and random effects models, best evidence syntheses (qualitative systematic reviews) as well as examples of methods to evaluate heterogeneity and publication bias. STATA statistical software will be used to perform meta-analysis during the computer lab, along with tutorials on how to effectively use tools such as PubMed for conducting reviews.
- Subjects:
- Statistics and Research Methods
- Keywords:
- Meta-analysis Research -- Methodology Systematic reviews (Medical research)
- Resource Type:
- Courseware