Search Constraints
Number of results to display per page
Results for:
Technology Application and Innovation
Remove constraint Technology Application and Innovation
1 - 9 of 9
Search Results
-
Video
Prof. Jesse ZHU, Senior Advisor to the President, Eastern Institute of Technology, Ningbo, China, delivered the 36th PAIR Distinguished Lecture titled “Research Strategy and Planning: How to Prepare a Research Career?” on 12 March 2025 on the PolyU campus. The lecture attracted over 110 participants to join in person and captivated an online audience of over 13,300 from different countries and regions who watched the live broadcast on multiple social media platforms, including Bilibili, WeChat, Weibo and YouTube.
Prof. Zhu kickstarted his presentation by sharing his personal anecdotes from his journey through academia and industry, emphasising that innovation, curiosity and a commitment to societal impact have guided his research trajectory. He stressed the importance of identifying meaningful research themes to ensure both academic rigor and real-world relevance, noting, “True scientific breakthroughs emerge when we chase fundamental truths, not just external accolades.”
Prof. Zhu illustrated these principles with examples from his cross-disciplinary work, including (i) healthcare innovation, the development of a rotating fluidiser which is a device that enable uniform particle suspension to optimise drug delivery systems; (ii) sustainable manufacturing, the application of nanoparticles in paint production to enhance flow efficiency and reduce environmental waste; and (iii) urban sustainability, pioneering compact wastewater treatment technologies for space-constrained urban environments.
In conclusion, Prof. Zhu underscored the transformative role of research in advancing global well-being, advocating for a balance between theoretical exploration and applied solutions. He urged students to cultivate resilience, collaborate across disciplines, and align their work with societal needs, that is, “persistence and purpose are the bedrock of a fulfilling research career.”
The event concluded with a lively question-and-answer session moderated by Prof. Chen, where attendees explored topics ranging from funding strategies to various considerations in technology development with Prof. Zhu.
Event date: 12/03/2025
Speaker: Prof. Jesse ZHU
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Research -- Methodology Research -- Vocational guidance Science--Vocational guidance
- Resource Type:
- Video
-
Video
The lecture commenced with a warm welcome and a brief introduction of the speaker by Prof. CHEN Qingyan, Director of PAIR. Prof. Zheng kickstarted his presentation by outlining the key driving forces of innovation and technologies. He shared that achieving success in the “from zero to one” and the subsequent “from one to N” innovation stages often come with the inevitable “valley of death” period, which spans over a decade. He then elaborated on how he and his team have spent 20 years of relentless effort overcoming the “valleys of death” in studying structural superlubricity, building a model for talent development, and entering into the next “one-to-N” development phase. Prof. Zheng also shared the key turning points in his academic and research journey and outlined how the X-Institute nurtures interdisciplinary research talents.
Event date: 21/11/2024
Speaker: Prof. ZHENG Quanshui (Academician of the Chinese Academy of Sciences, Founding Principal of X-Institute and Professor of Tsinghua Shenzhen International Graduate School, China)
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Scientists Technological innovations
- Resource Type:
- Video
-
Video
A rapidly expanding research area involves the development of routes to shape programmable three-dimensional (3D) structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods to control the properties of materials systems and the function of devices, through not only static architectures, but also morphable structures and shape-shifting processes. Soft matter equipped with responsive components can switch between designed shapes, but cannot support the types of dynamic morphing capabilities needed to reproduce continuous shape-shifting processes of interest for many applications. Challenges lie in the establishment of 3D assembly/fabrication techniques compatible with wide classes of materials and 3D geometries, and schemes to program target shapes after fabrication.
In this talk, Prof. HUANG Yonggang will introduce a mechanics-guided assembly approach that exploits controlled buckling for constructing complex 3D micro/nanostructures from patterned two-dimensional (2D) micro/nanoscale precursors that can be easily formed using established semiconductor technologies. This approach applies to a very broad set of materials (e.g., semiconductors, polymers, metals, and ceramics) and even their heterogeneous integration, over a wide range of length scales (e.g., from 100 nm to 10 cm). To allow realisation of 3D mesostructures that are capable of qualitative shape reconfiguration, Prof. HUANG devises a loading-path controlled strategy that relies on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear buckling. Prof. HUANG will also introduce a recent work on shape programmable soft surface, constructed from a matrix of filamentary metal traces, driven by programmable, distributed electromagnetic forces that follow from the passage of electrical currents in the presence of a static magnetic field. Under the guidance of a mechanics model-based strategy to solve the inverse problem, the surface can morph into a wide range of 3D target shapes and shape-shifting processes. The compatibility of these approaches with the state-of-the-art fabrication/processing techniques, along with the versatile capabilities, allow transformation of diverse existing 2D microsystems into complex configurations, providing unusual design options in the development of novel functional devices.
Event date: 08/08/2024
Speaker: Prof. HUANG Yonggang (Northwestern University)
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Buckling (Mechanics) Materials science Elastomers Microstructure
- Resource Type:
- Video
-
Video
The seminar commenced with a welcome speech and speaker introduction by Prof. WANG Zuankai, Associate Vice President (Research and Innovation) of PolyU. This was followed by Prof. Leng’s presentation. He first provided a brief background about shape memory polymers (SMP), pointing out that these smart materials can reversibly change between permanent and temporary shapes in response to changes in external stimuli such as temperature. Next, he gave an overview of the researchers from different scientific research institutions and universities around the world who specialise in SMP research, and the types of SMP materials that HIT researchers focus on. He said that SMP are hard to actuate and their recovery strength and speed are low, and so relevant solutions to these challenges are important for the development of SMP composites (SMPC). Prof. Leng then gave examples demonstrating how SMPC can be prepared through actuation methods involving different stimuli such as heat, electricity, magnetism, radio frequency, solution/water, light, etc. He mentioned that SMPC can be used to prepare various structures for aerospace, smart manufacturing, photoelectric applications, microelectromechanical systems applications, and smart clothing. After that, Prof. Leng introduced 4D printing, a novel additive manufacturing process for producing printed objects that can adaptively change their configurations/properties in response to external stimuli. He mentioned that 4D printing is important for producing a range of SMPC-based materials for biomedical applications. To conclude, Prof. Leng said that SMP research is a fast-growing emerging research field. He anticipated that shape memory smart structures incorporated with sensors, actuators, and controllers, would be widely used in aerospace, civil aviation, automotive, energy and daily life.
Event date: 15/07/2024
Speaker: Prof. LENG Jinsong
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Smart materials Polymeric composites Additive manufacturing Shape memory polymers
- Resource Type:
- Video
-
Video
The lecture commenced with a welcome speech and speaker introduction by Prof. CHEN Qingyan, Director of PAIR, followed by a presentation by Prof. Cui. He first shared his scientific journey by reminiscing about the old days when he moved abroad to develop an academic career after graduating in China and gradually became a highly successful scientist. Next, he explained the importance of interdisciplinary research and shared how the combination of medical science and engineering enables the development of health technologies such as imaging, keyhole surgery, in vitro diagnostics, in vitro fertilisation, etc. Prof. Cui emphasised that scientists are to “discover” and find out “how a thing happens” whereas engineers are to “create” and “make things happen”. He then gave some advice on how to do well in interdisciplinary research and shared some innovations in microbioreactor and point-of-care testing developed by him and his team which has achieved great success in research commercialisation and made significant contributions to drug discovery and public health. To conclude, Prof. Cui shared that scientific success is based on many factors, including team, facilities, timing, luck, etc., and encouraged the next generation of engineers and scientists to consider a career in biomedical engineering, an exciting and rewarding domain.
Following the lecture, a lively and insightful question-and-answer session was moderated by Ir Prof. ZHANG Ming, Director of the Research Institute for Sports Science and Technology (RISports), Head of the Department of Biomedical Engineering and Chair Professor of Biomechanics. The audience had fruitful discussions with Prof. Cui.
Event date: 23/04/2024
Speaker: Prof. Zhanfeng CUI (University of Oxford)
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Interdisciplinary research Interdisciplinary approach in education
- Resource Type:
- Video
-
MOOC
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications.
This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.
This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.
It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
- Course related:
- AAE5103 Artificial Intelligence in Aviation Industry
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence Machine learning
- Resource Type:
- MOOC
-
Video
An online lecture on the topic of "Ultrasound: Application in Food Science and Technology". The Faculty of Applied Science and Textiles (FAST) and the Institute of Textiles & Clothing (ITC) organized the mini-lecture series for more than three years. The lectures aim to enrich students' knowledge in creative perspectives and arouse their interest in Sciences, Fashion and Textiles. In view of the unpredictable development of the COVID-19 pandemic, the upcoming mini-lecture Series will be switched from face-to-face mode to online mode.
- Subjects:
- Food Science
- Keywords:
- Ultrasonic imaging Food science
- Resource Type:
- Video
-
e-book
Climate change is an urgent problem. Because it is causing new weather extremes and fatal catastrophes, climate change is better termed climate disruption. Bending the curve to flatten the upward trajectory of pollution emissions responsible for climate disruption is essential in order to protect billions of people from this global threat. Education is a key part of the solution. This textbook book lays out ten solutions that together can bend the curve of climate warming below dangerous levels. These solutions fall into six categories: science, societal transformation, governance, economics, technology, and ecosystem management. Four themes emerge from the book: * There is still time to bend the curve. The time to act was yesterday, but if proper actions are taken now, there is still time to avoid disastrous changes. We have to pull on three levers: The carbon lever to achieve zero net emissions of carbon dioxide before 2050; the short-lived climate pollutants lever to drastically reduce concentrations of other major climate pollutants; and the atmospheric carbon extraction lever to remove massive amounts of carbon dioxide from the atmosphere. * Bending the curve will require interdisciplinary solutions. Climate change requires integrating approaches from the natural sciences, social sciences, and humanities, so this textbook—unlike most on climate change solutions—does just that, with chapters written by experts in climate science, social justice, economics, environmental policy, political science, energy technologies, ecology, and religion. Bending the curve also requires preservation and restoration of ecological systems. * Bending the curve requires a radical shift in attitude. This shift requires change in behavior, change in our attitudes towards each other, and change in our attitude towards nature. Climate justice has to be an integral part of the solution. * Technology, market mechanism and policy need to be a part of the solution. New market mechanisms and other policies are required to spur technological innovations and to scale clean technologies globally. There are ancillary materials available for this book. List of Authors: Ramanathan, VeerabhadranAines, RogerAuffhammer, MaxBarth, MattCole, JonathanForman, FonnaHan, HahrieJacobsen, MarkPellow, DavidPezzoli, KeithPress, DanielRignot, EricSamuelsen, ScottSilver, WhendeeSolomon, GinaSomerville, RichardTucker, Mary EvelynVictor, DavidZaelke, DurwoodScott Friese
- Subjects:
- Chemistry
- Keywords:
- Climate change mitigation Textbooks Climatic changes
- Resource Type:
- e-book
-
Courseware
Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency. Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques. The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.
- Subjects:
- Building Services Engineering, Chemistry, and Environmental Engineering
- Keywords:
- Storage batteries Renewable energy sources Hydrogen as fuel Energy storage Hydrogen -- Storage
- Resource Type:
- Courseware