Search Constraints
Number of results to display per page
Results for:
Search Results
-
e-book
All of the mathematics required beyond basic calculus is developed “from scratch.” Moreover, the book generally alternates between “theory” and “applications”: one or two chapters on a particular set of purely mathematical concepts are followed by one or two chapters on algorithms and applications; the mathematics provides the theoretical underpinnings for the applications, while the applications both motivate and illustrate the mathematics. Of course, this dichotomy between theory and applications is not perfectly maintained: the chapters that focus mainly on applications include the development of some of the mathematics that is specific to a particular application, and very occasionally, some of the chapters that focus mainly on mathematics include a discussion of related algorithmic ideas as well. The mathematical material covered includes the basics of number theory (including unique factorization, congruences, the distribution of primes, and quadratic reciprocity) and of abstract algebra (including groups, rings, fields, and vector spaces). It also includes an introduction to discrete probability theory—this material is needed to properly treat the topics of probabilistic algorithms and cryptographic applications. The treatment of all these topics is more or less standard, except that the text only deals with commutative structures (i.e., abelian groups and commutative rings with unity) — this is all that is really needed for the purposes of this text, and the theory of these structures is much simpler and more transparent than that of more general, non-commutative structures. There are a few sections that are marked with a “(∗),” indicating that the material covered in that section is a bit technical, and is not needed else- where. There are many examples in the text, which form an integral part of the book, and should not be skipped. There are a number of exercises in the text that serve to reinforce, as well as to develop important applications and generalizations of, the material presented in the text. Some exercises are underlined. These develop important (but usually simple) facts, and should be viewed as an integral part of the book. It is highly recommended that the reader work these exercises, or at the very least, read and understand their statements. In solving exercises, the reader is free to use any previously stated results in the text, including those in previous exercises. However, except where otherwise noted, any result in a section marked with a “(∗),” or in §5.5, need not and should not be used outside the section in which it appears. There is a very brief “Preliminaries” chapter, which fixes a bit of notation and recalls a few standard facts. This should be skimmed over by the reader. There is an appendix that contains a few useful facts; where such a fact is used in the text, there is a reference such as “see §An,” which refers to the item labeled “An” in the appendix.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Algebra Textbooks Number theory Computer science -- Mathematics
- Resource Type:
- e-book
-
e-book
Active Calculus is different from most existing calculus texts in at least the following ways: the text is freely readable online in HTML format and is also available for in PDF; in the electronic format, graphics are in full color and there are live links to java applets; version 2.0 now contains WeBWorK exercises in each chapter, which are fully interactive in the HTML format and included in print in the PDF; the text is open source, and interested users can gain access to the original source files on GitHub; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; following the WeBWorK exercises in each section, there are several challenging problems that require students to connect key ideas and write to communicate their understanding.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Calculus
- Resource Type:
- e-book
-
e-book
This is a text for a two-term course in introductory real analysis for junior or senior mathematics majors and science students with a serious interest in mathematics. Prospective educators or mathematically gifted high school students can also benefit from the mathematical maturity that can be gained from an introductory real analysis course. The book is designed to fill the gaps left in the development of calculus as it is usually presented in an elementary course, and to provide the background required for insight into more advanced courses in pure and applied mathematics. The standard elementary calculus sequence is the only specific prerequisite for Chapters 1–5, which deal with real-valued functions. (However, other analysis oriented courses, such as elementary differential equation, also provide useful preparatory experience.) Chapters 6 and 7 require a working knowledge of determinants, matrices and linear transformations, typically available from a first course in linear algebra. Chapter 8 is accessible after completion of Chapters 1–5.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Mathematical analysis
- Resource Type:
- e-book
-
e-book
Elementary Differential Equations with Boundary Value Problems is written for students in science, engineering, and mathematics who have completed calculus through partial differentiation. An elementary text should be written so the student can read it with comprehension without too much pain. I have tried to put myself in the student's place, and have chosen to err on the side of too much detail rather than not enough. An elementary text can't be better than its exercises. This text includes 1695 numbered exercises, many with several parts. They range in difficulty from routine to very challenging. An elementary text should be written in an informal but mathematically accurate way, illustrated by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language that students can understand. I have minimized the number of explicitly stated theorems and definitions, preferring to deal with concepts in a more conversational way, copiously illustrated by 250 completely worked out examples. Where appropriate, concepts and results are depicted in 144 figures. Although I believe that the computer is an immensely valuable tool for learning, doing, and writing mathematics, the selection and treatment of topics in this text reflects my pedagogical orientation along traditional lines. However, I have incorporated what I believe to be the best use of modern technology, so you can select the level of technology that you want to include in your course. The text includes 336 exercises – identified by the symbols C and C/G – that call for graphics or computation and graphics. There are also 73 laboratory exercises – identified by L – that require extensive use of technology. In addition, several sections include informal advice on the use of technology. If you prefer not to emphasize technology, simply ignore these exercises and the advice.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Boundary value problems Differential equations Partial
- Resource Type:
- e-book
-
e-book
In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach andmove them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the "favorite examples" that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes atCasper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).
- Subjects:
- Mathematics and Statistics
- Keywords:
- Computer science -- Mathematics Textbooks Mathematics
- Resource Type:
- e-book
-
e-book
In many introductory level courses today, teachers are challenged with the task of fitting in all of the core concepts of the course in a limited period of time. The Introductory Statistics teacher is no stranger to this challenge. To add to the difficulty, many textbooks contain an overabundance of material, which not only results in the need for further streamlining, but also in intimidated students. Shafer and Zhang wrote Introductory Statistics by using their vast teaching experience to present a complete look at introductory statistics topics while keeping in mind a realistic expectation with respect to course duration and students' maturity level. Over time the core content of this course has developed into a well-defined body of material that is substantial for a one-semester course. Shafer and Zhang believe that the students in this course are best served by a focus on that core material and not by an exposure to a plethora of peripheral topics. Therefore in writing Introduction to Statistics they have sought to present only the core concepts and use a wide-ranging set of exercises for each concept to drive comprehension. As a result Introduction to Statistics is a smaller and less intimidating textbook that trades some extended and unnecessary topics for a better-focused presentation of the central material. You will not only appreciate the depth and breadth of exercises in Introduction to Statistics, but you will also like the close attention to detail that Shafer and Zhang have paid to the student and instructor solutions manuals. This is one of few books on the market where the textbook authors have written the solutions manuals to maintain the integrity of the material. In addition, in order to facilitate the use of technology with the book the authors included “large data set exercises,” where appropriate, that refer to large data sets that are available on the web, and for which use of statistical software is necessary.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Statistics
- Resource Type:
- e-book
-
e-book
It is essential to lay a solid foundation in mathematics if a student is to be competitive in today's global market. The importance of algebra, in particular, cannot be overstated, as it is the basis of all mathematical modeling used in applications found in all disciplines. Traditionally, the study of algebra is separated into a two parts, Elementary and Intermediate Algebra. This textbook by John Redden, Intermediate Algebra, is the second part. Written in a clear and concise manner, it carefully builds on the basics learned in Elementary Algebra and introduces the more advanced topics required for further study in applications found in most disciplines. Used as a standalone textbook, Intermediate Algebra offers plenty of review as well as something new to engage the student in each chapter. Written as a blend of the traditional and graphical approaches to the subject, this textbook introduces functions early and stresses the geometry behind the algebra. While CAS independent, a standard scientific calculator will be required and further research using technology is encouraged. Intermediate Algebra is written from the ground up in an open and modular format, allowing the instructor to modify it and leverage their individual expertise as a means to maximize the student experience and success. A more modernized element, embedded video examples, are present, but the importance of practice with pencil and paper is consistently stressed. Therefore, this text respects the traditional approaches to algebra pedagogy while enhancing it with the technology available today. The importance of Algebra cannot be overstated; it is the basis for all mathematical modeling used in all disciplines. After completing a course sequence based on Elementary and Intermediate Algebra, students will be on firm footing for success in higher-level studies at the college level.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Algebra Textbooks
- Resource Type:
- e-book
-
e-book
Our writing is based on three premises. First, life sciences students are motivated by and respond well to actual data related to real life sciences problems. Second, the ultimate goal of calculus in the life sciences primarily involves modeling living systems with difference and differential equations. Understanding the concepts of derivative and integral are crucial, but the ability to compute a large array of derivatives and integrals is of secondary importance. Third, the depth of calculus for life sciences students should be comparable to that of the traditional physics and engineering calculus course; else life sciences students will be short changed and their faculty will advise them to take the 'best' (engineering) course. In our text, mathematical modeling and difference and differential equations lead, closely follow, and extend the elements of calculus. Chapter one introduces mathematical modeling in which students write descriptions of some observed processes and from these descriptions derive first order linear difference equations whose solutions can be compared with the observed data. In chapters in which the derivatives of algebraic, exponential, or trigonometric functions are defined, biologically motivated differential equations and their solutions are included. The chapter on partial derivatives includes a section on the diffusion partial differential equation. There are two chapters on non-linear difference equations and on systems of two difference equations and two chapters on differential equations and on systems of differential equation.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Calculus
- Resource Type:
- e-book
-
e-book
Math in Society is a free, open textbook. This book is a survey of contemporary mathematical topics, most non-algebraic, appropriate for a college-level topics course for liberal arts majors. The text is designed so that most chapters are independent, allowing the instructor to choose a selection of topics to be covered. Emphasis is placed on the applicability of the mathematics. Core material for each topic is covered in the main text, with additional depth available through exploration exercises appropriate for in-class, group, or individual investigation. This book is appropriate for Math 107 (Washington State Community Colleges common course number).
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Mathematics
- Resource Type:
- e-book
-
e-book
Precalculus: An Investigation of Functions is a free, open textbook covering a two-quarter pre-calculus sequence including trigonometry. The first portion of the book is an investigation of functions, exploring the graphical behavior of, interpretation of, and solutions to problems involving linear, polynomial, rational, exponential, and logarithmic functions. An emphasis is placed on modeling and interpretation, as well as the important characteristics needed in calculus. The second portion of the book introduces trigonometry. Trig is introduced through an integrated circle/triangle approach. Identities are introduced in the first chapter, and revisited throughout. Likewise, solving is introduced in the second chapter and revisited more extensively in the third chapter. As with the first part of the book, an emphasis is placed on motivating the concepts and on modeling and interpretation. In addition to the paper homework sets, algorithmetically generated online homework is available as part of a complete course shell package, which also includes a sample syllabus, teacher notes with lecture examples, sample quizzes and exams, printable classwork sheets and handouts, and chapter review problems. If you teach in Washington State, you can find the course shell in the WAMAP.org template course list. For those located elsewhere, you can access the course shell at MyOpenMath.com. A self-study version of the online course exercises is also available on MyOpenMath.com for students wanting to learn the material on their own, or who need a refresher.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Trigonometry Precalculus Algebra Textbooks
- Resource Type:
- e-book