Search Constraints
Number of results to display per page
Results for:
Keywords
Big data
Remove constraint Keywords: Big data
Language
English
Remove constraint Language: English
1 - 7 of 7
Search Results
-
Others
Kaggle offers a no-setup, customizable, Jupyter Notebooks environment. Access GPUs at no cost to you and a huge repository of community published data & code. Inside Kaggle you’ll find all the code & data you need to do your data science work. Use over 50,000 public datasets and 400,000 public notebooks to conquer any analysis in no time.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence Big data Machine learning
- Resource Type:
- Others
-
Video
Sue Desmond-Hellmann is using precision public health -- an approach that incorporates big data, consumer monitoring, gene sequencing and other innovative tools -- to solve the world's most difficult medical problems. It's already helped cut HIV transmission from mothers to babies by nearly half in sub-Saharan Africa, and now it's being used to address alarming infant mortality rates all over the world. The goal: to save lives by bringing the right interventions to the right populations at the right time.
- Subjects:
- Health Sciences and Biology
- Keywords:
- Medicial informatics Big data Public health
- Resource Type:
- Video
-
MOOC
Data science has critical applications across most industries, and is one of the most in-demand careers in computer science. Data scientists are the detectives of the big data era, responsible for unearthing valuable data insights through analysis of massive datasets. And just like a detective is responsible for finding clues, interpreting them, and ultimately arguing their case in court, the field of data science encompasses the entire data life cycle. That starts with capturing lots of raw data using data collection techniques, and then building and maintaining data pipelines and data warehouses that efficiently “clean” the data and make it accessible for analysis at scale. This data infrastructure allows data scientists to efficiently process datasets using data mining and data modeling skills, as well as analyze these outputs with sophisticated techniques like predictive analysis and qualitative analysis. Finally, these findings must be presented using data visualization and data reporting skills to help business decision makers. Depending on the size of the company, data scientists may be responsible for this entire data life cycle, or they might specialize in a particular portion of the life cycle as part of a larger data science team
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Big data Data mining Machine learning
- Resource Type:
- MOOC
-
MOOC
This course covers a wide variety of topics in machine learning and statistical modeling. While mathematical methods and theoretical aspects will be covered, the primary goal is to provide students with the tools and principles needed to solve the data science problems found in practice. This course also serves as a foundation on which more specialized courses and further independent study can build. This course was designed as part of the core curriculum for the Center for Data Science's Masters degree in Data Science. Other interested students who satisfy the prerequisites are welcome to take the class as well. Note that class is intended as a continuation of DS-GA-1001 Intro to Data Science, which covers some important, fundamental data science topics that may not be explicitly covered in this DS-GA class (e.g. data cleaning, cross-validation, and sampling bias).
- Course related:
- LGT6801 Guided Study in Logistics I
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mathematics and Statistics
- Keywords:
- Big data Data mining Mathematical statistics -- Data processing Machine learning
- Resource Type:
- MOOC
-
Presentation
This video was recorded at COIN / PlanetData Winter School on Knowledge Technologies for Complex Business Environments, Ljubljana 2011. Organized by COIN FP7 Integrated Project and PlanetData FP7 Network of Excellence, the school seeks to bring together students, scholars and researchers from industry in order to foster collaboration and interoperability with innovative services and project large-scale data management in business environments. The main topics of the winter school are: Interoperability and collaboration models and solutions, Enterprise interoperability and collaboration services, Innovative knowledge and semantically powered technologies, Knowledge process and context modelling, Pro-active knowledge tools, Large scale analytics and reasoning tools, Business cases and real case studies.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Management
- Keywords:
- Big data -- Social aspects Big data
- Resource Type:
- Presentation
-
-
Courseware
While big data infiltrates all walks of life, most firms have not changed sufficiently to meet the challenges that come with it. In this course, you will learn how to develop a big data strategy, transform your business model and your organization. This course will enable professionals to take their organization and their own career to the next level, regardless of their background and position. Professionals will learn how to be in charge of big data instead of being subject to it. In particular, they will become familiar with tools to: - assess their current situation regarding potential big data-induced changes of a disruptive nature, - identify their options for successfully integrating big data in their strategy, business model and organization, or if not possible, how to exit quickly with as little loss as possible, and - strengthen their own position and that of their organization in our digitalized knowledge economy The course will build on the concepts of product life cycles, the business model canvas, organizational theory and digitalized management jobs (such as Chief Digital Officer or Chief Informatics Officer) to help you find the best way to deal with and benefit from big data induced changes. During the course, your most pressing questions will be answered in our feedback videos with the lecturer. In the assignments of the course, you will choose a sector and a stakeholder. For this, you will develop your own strategy and business model. This will help you identify the appropriate organizational structure and potential contributions and positions for yourself.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Management
- Keywords:
- Business -- Data processing Big data
- Resource Type:
- Courseware
-
MOOC
Learn about the integrative power of knowledge management, Big Data and Cloud Computing, and how they impact the new business era.
- Subjects:
- Computing, Data Science and Artificial Intelligence, Management, Business Information Technology, and Industrial and Systems Engineering
- Keywords:
- Knowledge management Big data
- Resource Type:
- MOOC