Search Constraints
Number of results to display per page
Results for:
Keywords
Electric vehicles
Remove constraint Keywords: Electric vehicles
Language
English
Remove constraint Language: English
1 - 8 of 8
Search Results
-
MOOC
Electric powertrains are estimated to propel a large part of road vehicles in the future, due to their high efficiency and zero tailpipe emissions. But, the cost and weight of batteries and the time to charge them are arguments for the conventional powertrain in many vehicles. This makes it important for engineers working with vehicles to understand how both these powertrains work, and how to determine their performance and energy consumption for different type of vehicles and different ways of driving vehicles. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about electric powertrains. In this course, you will learn how electric and conventional combustion engine powertrains are built and how they work. You will learn methods to calculate their performance and energy consumption and how to simulate them in different driving cycles. You will also learn about the basic function, the main limits and the losses of: Combustion engines, Transmissions Electric machines, Power electronics Batteries. This knowledge will also be a base for understanding and analysing different types of hybrid vehicles, discussed in the course, Hybrid Vehicles. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Automobiles -- Power trains
- Resource Type:
- MOOC
-
MOOC
Why are hybrid vehicles still more common than battery electric ones? Why are electric vehicles still more expensive than conventional or hybrid ones? In this course, you will get the answers to this and much more. While electric motors can improve vehicles regarding performance, energy consumption and emissions, they suffer from high cost and weight of batteries. Smart combinations of electric motors and combustion engines in a hybrid powertrain can combine these strengths with the advantages of combustion engines. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about hybridpowertrains. Inthis course, we willexamine different mechanical layouts of hybrid powertrains and how they influence the performance and complexity of the powertrain. Different sizing of powertrains in micro, mild, full hybrids, as well as plug-in hybrids, is also discussed and you'll learn how they can be modelled and analyzed for example by simulation of driving cycles. You will also learn about the Energy Management system and how this controls the hybrid powertrain modes and when to charge and discharge the battery. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Hybrid electric vehicles
- Resource Type:
- MOOC
-
Video
Is hydrogen the solution to electric cars? This video discusses the safety of hydrogen, cost of hydrogen, infrastructure set up for hydrogen charging, and how hydrogen fuel cells work in vehicles.
-
Video
Hydrogen fuel cell cars and lithium-ion battery powered cars, which is more energy efficient and cost effective? This video shows you some facts from perspectives of production, storage of fuels, and infrastructure set up for charging.
- Subjects:
- Electrical Engineering, Chemistry, Environmental Engineering, and Transportation
- Keywords:
- Hydrogen cars Hydrogen as fuel Electric vehicles Fuel cells Hydrogen -- Storage
- Resource Type:
- Video
-
Video
Some people say that buying an electric car is a great way to fight climate change - but if they use electricity that is made by burning fossil fuels, are they really more environmentally friendly than gas powered cars?
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Electric vehicles -- Environmental aspects Automobiles -- Environmental aspects
- Resource Type:
- Video
-
Courseware
This course explains how electric mobility can work for various businesses, including fleet managers, automobile manufacturers and charging infrastructure providers. The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will provide insights into and examples of how innovations have disrupted conventional businesses and created new businesses altogether. This will be explained through various concepts and models, including total cost of ownership models, lean mass production, value chain thinking and business integration.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles Electric vehicle industry
- Resource Type:
- Courseware
-
Courseware
This course focuses on the technology behind electric cars. You will explore the working principle of electric vehicles, delve into the key roles played by motors and power electronics, learn about battery technology, EV charging, smart charging and about future trends in the development of electric cars.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles Electric vehicles -- Batteries
- Resource Type:
- Courseware
-
Courseware
This course explores the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure; profitable business models for electric mobility; and effective policies for governmental bodies, which will accelerate the uptake of electric mobility.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles
- Resource Type:
- Courseware