Search Constraints
Number of results to display per page
Results for:
Keywords
Machine learning
Remove constraint Keywords: Machine learning
Year
2011
Remove constraint Year: 2011
1 - 3 of 3
Search Results
-
Video
Statistics, Machine Learning and Data Science can sometimes seem like very scary topics, but since each technique is really just a combination of small and simple steps, they are actually quite simple. My goal with StatQuest is to break down the major methodologies into easy to understand pieces. That said, I don't dumb down the material. Instead, I build up your understanding so that you are smarter.
- Course related:
- HTI34016 Introduction to Clinical Research
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mathematics and Statistics
- Keywords:
- Machine learning Mathematical analysis Statistics Data mining
- Resource Type:
- Video
-
Video
This youtube playlist included the topic of deep learning for human language processing, linear algebra, deep reinforcement learning, generative adversarial network, deep learning theory, structured learning, and machine learning.
- Course related:
- LGT6801 Guided Study in Logistics I
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning Natural language processing (Computer science)
- Resource Type:
- Video
-
Presentation
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Hierarchical modeling and reasoning are fundamental in machine intelligence, and for this the two-parameter Poisson-Dirichlet Process (PDP) plays an important role. The most popular MCMC sampling algorithm for the hierarchical PDP and hierarchical Dirichlet Process is to conduct an incremental sampling based on the Chinese restaurant metaphor, which originates from the Chinese restaurant process (CRP). In this paper, with the same metaphor, we propose a new table representation for the hierarchical PDPs by introducing an auxiliary latent variable, called table indicator, to record which customer takes responsibility for starting a new table. In this way, the new representation allows full exchangeability that is an essential condition for a correct Gibbs sampling algorithm. Based on this representation, we develop a block Gibbs sampling algorithm, which can jointly sample the data item and its table contribution. We test this out on the hierarchical Dirichlet process variant of latent Dirichlet allocation (HDP-LDA) developed by Teh, Jordan, Beal and Blei. Experiment results show that the proposed algorithm outperforms their "posterior sampling by direct assignment" algorithm in both out-of-sample perplexity and convergence speed. The representation can be used with many other hierarchical PDP models.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning Artificial intelligence
- Resource Type:
- Presentation
-