Search Constraints
Number of results to display per page
Results for:
Bioinformatics and Data Analysis
Remove constraint Bioinformatics and Data Analysis
Keywords
Python (Computer program language)
Remove constraint Keywords: Python (Computer program language)
1 - 6 of 6
Search Results
-
Others
In these comprehensive video courses, created by Santiago Basulto, you will learn the whole process of data analysis. You'll be reading data from multiple sources (CSV, SQL, Excel), process that data using NumPy and Pandas, and visualize it using Matplotlib and Seaborn, Additionally, we've included a thorough Jupyter Notebook course, and a quick Python reference to refresh your programming skills.
- Course related:
- AMA1600 Fundamentals of AI and Data Analytics and AMA1751 Linear Algebra
- Subjects:
- Computing, Data Science and Artificial Intelligence and Mathematics and Statistics
- Keywords:
- Computer programming Computer science Python (Computer program language)
- Resource Type:
- Others
-
e-book
I never seemed to find the perfect data-oriented Python book for my course, so I set out to write just such a book. Luckily at a faculty meeting three weeks before I was about to start my new book from scratch over the holiday break, Dr. Atul Prakash showed me the Think Python book which he had used to teach his Python course that semester. It is a well-written Computer Science text with a focus on short, direct explanations and ease of learning.The overall book structure has been changed to get to doing data analysis problems as quickly as possible and have a series of running examples and exercises about data analysis from the very beginning. Chapters 2–10 are similar to the Think Python book, but there have been major changes. Number-oriented examples and exercises have been replaced with data- oriented exercises. Topics are presented in the order needed to build increasingly sophisticated data analysis solutions. Some topics like try and except are pulled forward and presented as part of the chapter on conditionals. Functions are given very light treatment until they are needed to handle program complexity rather than introduced as an early lesson in abstraction. Nearly all user-defined functions have been removed from the example code and exercises outside of Chapter 4. The word “recursion”1 does not appear in the book at all. In chapters 1 and 11–16, all of the material is brand new, focusing on real-world uses and simple examples of Python for data analysis including regular expressions for searching and parsing, automating tasks on your computer, retrieving data across the network, scraping web pages for data, object-oriented programming, using web services, parsing XML and JSON data, creating and using databases using Structured Query Language, and visualizing data. The ultimate goal of all of these changes is a shift from a Computer Science to an Informatics focus is to only include topics into a first technology class that can be useful even if one chooses not to become a professional programmer.
-
e-book
This book is about complexity science, data structures and algorithms, intermediate programming in Python, and the philosophy of science: Data structures and algorithms: A data structure is a collection that contains data elements organized in a way that supports particular operations. For example, a dictionary organizes key-value pairs in a way that provides fast mapping from keys to values, but mapping from values to keys is generally slower. An algorithm is a mechanical process for performing a computation. Designing efficient programs often involves the co-evolution of data structures and the algorithms that use them. For example, the first few chapters are about graphs, a data structure that is a good implementation of a graph---nested dictionaries---and several graph algorithms that use this data structure. Python programming: This book picks up where Think Python leaves off. I assume that you have read that book or have equivalent knowledge of Python. As always, I will try to emphasize fundmental ideas that apply to programming in many languages, but along the way you will learn some useful features that are specific to Python. Computational modeling: A model is a simplified description of a system that is useful for simulation or analysis. Computational models are designed to take advantage of cheap, fast computation. Philosophy of science: The models and results in this book raise a number of questions relevant to the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, holism and reductionism, and Bayesian epistemology. This book focuses on discrete models, which include graphs, cellular automata, and agent-based models. They are often characterized by structure, rules and transitions rather than by equations. They tend to be more abstract than continuous models; in some cases there is no direct correspondence between the model and a physical system. Complexity science is an interdisciplinary field---at the intersection of mathematics, computer science and physics---that focuses on these kinds of models. That's what this book is about.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Computational complexity Textbooks Python (Computer program language)
- Resource Type:
- e-book
-
Others
Scikit Learn provide simple and efficient tools for predictive data analysis. Assessible to everybody, and reusable in various contexts. It built on NumPy, SciPy, and matplotlib. It is open sources, commercially usable under the BSD License.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Python (Computer program language)
- Resource Type:
- Others
-
Others
Create interactive maps, and discover patterns in geospatial data.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Land Surveying and Geo-Informatics
- Keywords:
- Python (Computer program language) Geospatial data
- Resource Type:
- Others
-
Courseware
This course is for all of those struggling with data analysis. You will learn: - Overcome data analysis challenges in your work and research - Increase your productivity and make better business decisions - Enhance your data analysis skills using spreadsheets - Learn about advanced spreadsheet possibilities like array formulas and pivottables - Learn about Excel 2013 features like PowerPivot & PowerMap - Learn to organize and test your spreadsheets