Search Constraints
Number of results to display per page
Results for:
Bioinformatics and Data Analysis
Remove constraint Bioinformatics and Data Analysis
Keywords
R (Computer program language)
Remove constraint Keywords: R (Computer program language)
1 - 3 of 3
Search Results
-
e-book
Learning Statistics with R covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software. The book discusses how to get started in R as well as giving an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book.
- Subjects:
- Psychology and Mathematics and Statistics
- Keywords:
- Statistics -- Computer programs R (Computer program language) Textbooks Statistics Social sciences -- Statistical methods
- Resource Type:
- e-book
-
MOOC
This course teaches the R programming language in the context of statistical data and statistical analysis in the life sciences. We will learn the basics of statistical inference in order to understand and compute p-values and confidence intervals, all while analyzing data with R code. We provide R programming examples in a way that will help make the connection between concepts and implementation. Problem sets requiring R programming will be used to test understanding and ability to implement basic data analyses. We will use visualization techniques to explore new data sets and determine the most appropriate approach. We will describe robust statistical techniques as alternatives when data do not fit assumptions required by the standard approaches. By using R scripts to analyze data, you will learn the basics of conducting reproducible research. Given the diversity in educational background of our students we have divided the course materials into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. We start with simple calculations and descriptive statistics. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Life sciences -- Statistical methods Mathematical statistics -- Data processing R (Computer program language)
- Resource Type:
- MOOC
-
Others
We provide advice and resources to enable you to develop and/or extend your statistical computing skills, helping you to independently use common statistical packages (R, Stata, SAS, SPSS) for the analysis of research data.