Search Constraints
Number of results to display per page
Results for:
photovoltaic power generation
Remove constraint photovoltaic power generation
Keywords
Renewable energy sources
Remove constraint Keywords: Renewable energy sources
1 - 3 of 3
Search Results
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
MOOC
This course provides the tools needed to build a low-carbon power sector around the world. By diving into the perspective of different players in the power sector - from investors through to utilities, regulators and project developers - you will be able to choose the right strategies, policies and other levers needed to incentivise a cleaner power mix in your own context. This course explores the mix of approaches that can create a pro-renewables environment. It explores this from a policy, regulatory and supply-chain perspective and examines the incentives and rules available. Key policies are brought to life through case studies, learning from both success and failure. Key messages of the course include: - Ambitions for renewable electricity must be grounded in technical and financial feasibility - Pro-renewables environments recognise the needs of energy supply chain actors (e.g. project developers, utilities, regulators, electricity customers) and balances pricing, fiscal and financial and wider policies to incentivise and drive deployment - There are multiple ways to encourage deployment of renewables across different scales – these have strengths and weaknesses and must balance rate of deployment, affordability and efficiency of generation - Incentives and rules are a package and can be aligned to deliver affordable, efficient renewable electricity - several real-world examples demonstrate this - Different countries have succeeded and failed in creating pro-renewables environments – demonstrating that while lessons can be used from these experiences, there is no single route to success and the environment must be bespoke to the circumstances of the country. This course should help decision makers across the electricity supply chain, in both the public and private sector, understand what mix of incentives is ideal from their perspective.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Environmental Policy and Planning
- Keywords:
- Electric power distribution -- Environmental aspects Renewable energy sources
- Resource Type:
- MOOC
-
Courseware
Photovoltaic systems are often placed into a microgrid, a local electricity distribution system that is operated in a controlled way and includes both electricity users and renewable electricity generation. This course deals with DC and AC microgrids and covers a wide range of topics, from basic definitions, through modelling and control of AC and DC microgrids to the application of adaptive protection in microgrids. You will master various concepts related to microgrid technology and implementation, such as smart grid and virtual power plant, types of distribution network, markets, control strategies and components. Among the components special attention is given to operation and control of power electronics interfaces. You will familiarize yourself with the advantages and challenges of DC microgrids (which are still in an early stage). You will have the opportunity to master the topic of microgrids through an exercise in which you will evaluate selected pilot sites where microgrids were deployed. The evaluation will take the form of a simulation assignment and include a peer review of the results.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic power systems Microgrids (Smart power grids)
- Resource Type:
- Courseware