Search Constraints
Number of results to display per page
Results for:
Language
English
Remove constraint Language: English
Tags sim
Logistic Regression
Remove constraint Tags sim: Logistic Regression
1 - 3 of 3
Search Results
-
MOOC
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications.
This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.
This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.
It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
- Course related:
- AAE5103 Artificial Intelligence in Aviation Industry
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence Machine learning
- Resource Type:
- MOOC
-
Video
We introduce a Dimension-Reduced Second-Order Method (DRSOM) for convex and nonconvex (unconstrained) optimization. Under a trust-region-like framework, our method preserves the convergence of the second-order method while using only Hessian-vector products in two directions. Moreover; the computational overhead remains comparable to the first-order such as the gradient descent method. We show that the method has a local super-linear convergence and a global convergence rate of 0(∈-3/2) to satisfy the first-order and second-order conditions under a commonly used approximated Hessian assumption. We further show that this assumption can be removed if we perform one step of the Krylov subspace method at the end of the algorithm, which makes DRSOM the first first-order-type algorithm to achieve this complexity bound. The applicability and performance of DRSOM are exhibited by various computational experiments in logistic regression, L2-Lp minimization, sensor network localization, neural network training, and policy optimization in reinforcement learning. For neural networks, our preliminary implementation seems to gain computational advantages in terms of training accuracy and iteration complexity over state-of-the-art first-order methods including SGD and ADAM. For policy optimization, our experiments show that DRSOM compares favorably with popular policy gradient methods in terms of the effectiveness and robustness.
Event date: 19/09/2022
Speaker: Prof. Yinyu Ye (Stanford University)
Hosted by: Department of Applied Mathematics
- Subjects:
- Mathematics and Statistics
- Keywords:
- Nonconvex programming Mathematical optimization Convex programming
- Resource Type:
- Video
-
MOOC
Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you'll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you'll learn about some of Silicon Valley's best practices in innovation as it pertains to machine learning and AI. This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.
- Course related:
- COMP4434 Big Data Analytics and EIE6207 Theoretical Fundamental and Engineering Approaches for Intelligent Signal and. Information Processing
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence Machine learning
- Resource Type:
- MOOC