Search Constraints
Number of results to display per page
Results for:
Polyu oer sim
No
Remove constraint Polyu oer sim: No
Search Results
-
Courseware
How can we ensure the continuous supply of the increasingly scarce raw materials that are needed to make the products we use every day? In this course, we will look at the potential benefits of circular procurement and how recycling technologies and more efficient ways of collecting and recycling critical raw materials (CRMs) can make your business and production more resource resilient. A good number of the materials found in everyday products are now referred to as “critical”. This means that there is a risk of failure in their supply and that they are also critical in terms of economic importance. Many metals, for instance, are already critical or could become critical in the near future due to their limited availability and the growing demand for products worldwide. Think of the newest electronic products that contain critical metals such as gallium, which is used in integrated circuits; beryllium, used in electronic and telecommunications equipment and permanent magnets and germanium found in infra-red optics. Innovative product design and reusing, recycling and remanufacturing products can help to deal with a raw materials shortage. But this can only provide an integrated solution if we keep CRMs in the loop through smarter CRM management. The starting point is to identify CRMs in products. It is not always clear what materials are in which products. It is, therefore, necessary to keep all metals in the loop for as long as possible. Scarcity in the supply chain can not only damage businesses but also negatively impact economic development and the environment. For this reason, the course will also discuss environmental issues and electric and electronic waste regulations. This course will be of value to a wide range of professionals working in or interested in this field. These include professionals involved in producing products containing CRMs (such as electronics) as well as local or national government officials tasked with organizing waste management and recycling for these products. Students interested in the field of waste management will also find this course helpful for their studies in electronics, industrial design, and industrial ecology.
- Subjects:
- Environmental Engineering
- Keywords:
- Refuse refuse disposal Waste products Recycling (Waste etc.) Raw materials Strategic materials
- Resource Type:
- Courseware
-
Courseware
Global Satellite Navigation Systems (GNSS), such as GPS, have revolutionized positioning and navigation. Currently, four such systems are operational or under development. They are the American GPS, the Russian Glonass, the European Galileo, and the Chinese Beidou-Compass. This course will address: (1) the technical principles of Global Navigation Satellite Systems (GNSS), (2) the methods to improve the accuracy of standard positioning services down to the millimeter accuracy level and the integrity of the systems, and (3) the various applications for positioning, navigation, geomatics, earth sciences, atmospheric research and space missions. The course will first address the space segment, user and control segment, signal structure, satellite and receiver clocks, timing, computation of satellite positions, broadcast and precise ephemeris. It will also cover propagation error sources such as atmospheric effects and multipath. The second part of the course covers autonomous positioning for car navigation, aviation, and location based services (LBS). This part includes the integrity of GNSS systems provided for instance by Space Based Augmentation Systems (e.g. WAAS, EGNOS) and Receiver Autonomous Integrity Monitoring (RAIM). It will also cover parameter estimation in dynamic systems: recursive least-squares estimation, Kalman filter (time update, measurement update), innovation, linearization and Extended Kalman filter. The third part of the course covers precise relative GPS positioning with two or more receivers, static and kinematic, for high-precision applications. Permanent GPS networks and the International GNSS Service (IGS) will be discussed as well. In the last part of the course there will be two tracks (students only need to do one): (1) geomatics track: RTK services, LBS, surveying and mapping, civil engineering applications (2) space track: space based GNSS for navigation, control and guidance of space missions, formation flying, attitude determination The final lecture will be on (scientific) applications of GNSS.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Global Positioning System Artificial satellites in navigation
- Resource Type:
- Courseware
-
Courseware
Geo-information has proven to be extremely helpful in many aspects of risk and disaster management: locational and situational awareness, monitoring of hazards, damage detection, sharing of information, defining vulnerability areas, etc. This course aims to provide knowledge on risk and disaster management activities, demonstrate use of geo-information technologies in emergency response, outline current challenges and motivate young geo-specialist to seek for advanced solutions.
-
Courseware
Part 2 of offshore hydromechanics (OE4630) involves the linear theory of calculating 1st order motions of floating structures in waves and all relevant subjects such as the concept of RAOs, response spectra and downtime/workability analysis.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrostatics Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
If you’re interested in the concept of building with nature, then this is the engineering course for you. This course explores the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructural designs. You will learn the Building with Nature ecosystem-based design concept and its applications in water and coastal systems. During the course, you will be presented with a range of case studies to deepen your knowledge of ecological and engineering principles. You’ll learn from leading Dutch engineers and environmental scientists who see the Building with Nature integrated design approach as fundamental to a new generation of engineers and ecologists. Join us in exploring the interface between hydraulic engineering, nature and society.
- Subjects:
- Building Services Engineering and Hydraulic Engineering
- Keywords:
- Sustainable development Hydraulic engineering Water resources development -- Environmental aspects
- Resource Type:
- Courseware
-
Courseware
For the first time in history, the number of world citizens without access to electricity services has dropped below one billion, but still more than 2.8 billion people lack access to clean and affordable cooking fuels. Access to clean, affordable and reliable energy services for all world citizens is a precondition for the achievement of many other Sustainable Development Goals, such as health and economic development. The provision of sustainable energy services for all is not just a technological challenge or one confined to developing countries. Industrial and post-industrial societies also need to address issues of energy poverty and energy injustice. Rather than tackling the technological dimension of the formidable challenge to provide an inclusive energy system with renewable and climate-neutral energy resources, this course will focus on its social and institutional dimension. Introduction to the principle of the 4 As of energy services – Accessibility, Availability, Affordability, and Acceptability (environmental and social) will enrich your perspective as an engineering professional. Balancing these four critical and interdependent criteria is a recurrent challenge for individuals and society as a whole, as the characterization of the four As evolves with economic development and changing societal preferences. You will learn how the rules of the game as defined in laws, regulation and market designs impact the balance between the 4As. Using a wider socio-technical systems perspective you will discover new solutions for the inclusive provision of energy services beyond the purely technological solutions. After this course you can engage in a richer, more informed debate about how to achieve an inclusive energy system. You will be able to translate this knowledge into strategies to serve society’s future energy needs. The cases presented from developed and developing countries will help you to develop and test your analytical skills. Interviews with industry leaders shaping the energy system will challenge you to reflect on the position these leaders take and the interests they serve. Lastly, you will put yourself to the test by demonstrating your newly acquired knowledge and skills as a strategic policy advisor, in writing guidelines for a strategic action plan for the energy system and institutional context which are relevant for you, in your company, your city or your country.
- Subjects:
- Environmental Engineering and Environmental Policy and Planning
- Keywords:
- Energy policy Sustainable development Power resources -- Economic aspects Power resources -- Environmental aspects
- Resource Type:
- Courseware
-
Courseware
The discipline of structural geology studies the architecture of the solid Earth and other planets. Rock deformation patterns are exciting features beacause of their aesthetic beauty and their economic interest to man. Knowledge of the subsurface structure is vital for the success of a variety of engineering and mineral exploration pograms. A thorough understanding of rock structures is essential for strategic planning in the petroleum and mining industry, in construction operations, in waste disposal surveys and for water exploration. Deformation structures in the country rock are important further for locallizing hazard zones, such as potential rockslide masses, ground subsidence, and seismic faults. Research activities concentrate on rock defomation structures in he shallow continental crust.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Geology Structural Map reading Maps
- Resource Type:
- Courseware
-
Courseware
Groningen, a province in the northeast of the Netherlands, is experiencing earthquakes due to the extraction of gas. This phenomenon is called induced seismicity. But what is induced seismicity? And how can the risk to life safety and the consequences for the built environment be reduced? The Groningen situation is unique and for this reason, solutions for the built environment cannot simply be copied from abroad. To contribute to a basic understanding of the various topics in this field, knowledge lectures have been developed as Open Course Ware by a large number of scientists and practitioners.
- Subjects:
- Land Surveying and Geo-Informatics and Disaster Control and Management
- Keywords:
- Netherls -- Groningen Earthquakes Induced seismicity
- Resource Type:
- Courseware
-
MOOC
In the past few decades, China's cities have experienced a period of rapid development. Great changes have taken place in both urban space and urban life. With the booming of information and communications technology (ICT), ‘Big data’ such as mobile phone signaling, public transportation smart card records and ‘open data’ from commercial websites and government websites jointly promote the formation of the ‘new data environment’, thus providing a novel perspective for a better understanding of what changes have happened or are happening in China’s cities. This course combines both the new data generated for urban analysis and its research applications. The content ranges from big data acquisition, analysis, visualization and applications in the context of China’s urbanization and its city planning, to urban modeling methods and typical models, as well as the emerging trend and potential revolution of big data in urban planning. We have categorized the overall content of this online course into five sections, namely, overview, data, data processing, application, and perspective. The section of overview introduces cities in transition and describe the changing of urban space and urban life in China. The second section lists some commonly used open data and big data in the ‘new data environment’. Then, methods for data acquisition, cleaning and analysis are illustrated in data processing section. To better explain the data analysis method, the fourth part introduces several Chinese research cases to illustrate the application of these methods in urban research. Last but not least, the last section is the most future-oriented one, which is composed of some methodologies and proposals such as Data Augmented Design (DAD) and Big Model. This course, which shares experiences on big data analysis and its research application, will suit those concerning contemporary urbanizing China and its urban planning in the context of information and communication technologies.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- China Cities towns -- Data processing City planning Big data
- Resource Type:
- MOOC
-
Courseware
The course treats the following topics: - Relevant physical oceanography - Elements of marine geology (seafloor topography, acoustical properties of sediments and rocks) - Underwater sound propagation (ray acoustics, ocean noise) - Interaction of sound with the seafloor (reflection, scattering) - Principles of sonar (beamforming) - Underwater acoustic mapping systems (single beam echo sounding, multi-beam echo sounding, sidescan sonar) - Data analysis (refraction corrections, digital terrain modelling) - Applications (hydrographic survey planning and navigation, coastal engineering) - Current and future developments.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Underwater acoustics -- Remote sensing Ocean bottom Ocean bottom -- Remote sensing
- Resource Type:
- Courseware