Search Constraints
Number of results to display per page
Results for:
Color Theory and Application
Remove constraint Color Theory and Application
Polyu oer sim
No
Remove constraint Polyu oer sim: No
« Previous |
1 - 10 of 19
|
Next »
Search Results
-
Courseware
Offshore Hydromechanics includes the following modules: 1. Hydrostatics, static floating stability, constant 2-D potential flow of ideal fluids, and flows in real fluids. Introduction to resistance and propulsion of ships. Review of linear regular and irregular wave theory. 2. Analytical and numerical means to determine the flow around, forces on, and motions of floating bodies in waves. 3. Higher order potential theory and inclusion of non-linear effects in ship motions. Applications to motion of moored ships and to the determination of workability. 4. Interaction between the sea and sea bottom as well as the hydrodynamic forces and especially survival loads on slender structures.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Offshore structures -- Hydrodynamics Hydrostatics Fluid mechanics
- Resource Type:
- Courseware
-
Courseware
This course discusses the requirement, interpretation, methods and design of hydrological measurements. Following topics are covered: Accuracy requirements of measurements and error propagation: Related to a problem the required accuracy of measurements and the consequences for accuracy in the final result are discussed. Different types of errors are handled. Propagation of errors; for dependent and independent measurements, from mathematical relations and regression is demonstrated. Recapitulated is the theory of regression and correlation. Interpretation of measurements, data completion: By standard statistical methods screening of measured data is performed; double mass analysis, residual mass, simple rainfall-runoff modelling. Detection of trends; split record tests, Spearman rank tests. Methods to fill data gaps and do filtering on data series for noise reduction. Methods of hydrological measurements and measuring equipment: To determine quantitatively the most important elements in the hydrological cycle an overview is presented of most common hydrological measurements, measuring equipment and indirect determination methods i.e. for precipitation, evaporation, transpiration, river discharge and groundwater tables. Use, purpose and measurement techniques for tracers in hydrology is discussed. Advantages and disadvantages and specific condition/application of methods are discussed. Equipment is demonstrated and discussed. Areal distributed observation: Areal interpolation techniques of point observations; inverse distance, Thiessen, contouring, Kriging. Comparison of interpolation techniques and estimation of errors. Correlation analysis of areal distributed observation of rainfall. Design of measuring networks: Based on correlation characteristics from point measurements (e.g. rainfall stations) and accuracy requirements the design of a network of stations is demonstrated.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydrology -- Measurement Hydrology
- Resource Type:
- Courseware
-
Courseware
1. Objectives of modelling in transport and spatial planning. Model types. Theory of travel and locational behaviour. System description of planning area. Theory of choice models. Aggregate and disaggregate models. Mode choice, route choice and assignment modelling. Locational choice modelling. Parameter estimation and model calibration. Cases and exercises in model application; 2. Role of models in transportation and spatial systems analysis; model types; designing system description of study area (zonal segmentation, network selection); role of shortest path trees; 3. Utility theory for travel and location choice; trip generation models, trip distribution models; applications; 4. Theory of spatial interaction model; role of side constraints; distribution functions and their estimations; constructing base matrices and estimating OD-tables; 5. Theory of individual choice models; 6. Disaggregated choice models of the logit and probit type for time choice, mode choice, route choice and location choice; 7. Integrated models (sequential and simultaneous) for constructing OD-tables; 8. Equilibrium theory in networks and spatial systems; 9. Route choice and assignment; derivation of different model types (all-or-nothing model, multiple route model, (stochastic) equilibrium model); assignment in public transportation networks; analyses of effects; 10. Calibration of parameters and model validation; observation, estimation, validation; estimation methods; 11. Individual exercise computing travel demand in networks; getting familiar with software; computing all transportation modelling steps; analyse own planning scenarios; writing a report.
- Subjects:
- Transportation
- Keywords:
- Spatial systems Transportation
- Resource Type:
- Courseware
-
Courseware
Maps are powerful visual tools, both for communicating ideas and for facilitating data exploration. In this course, you will learn design principles and techniques for creating maps with contemporary mapping tools, including ArcGIS Pro. In this lab-focused course, you'll apply cartographic theory to practical problems, with a focus on design decisions such as selecting visual variables, classifying and generalizing data, applying principles of color and contrast, and choosing projections for maps.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Geographic information systems Cartography ArcGIS
- Resource Type:
- Courseware
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
- Subjects:
- Physics
- Keywords:
- Thermodynamics Physics Magnetism Electricity
- Resource Type:
- e-book
-
e-book
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
-
Courseware
Principles of Microeconomics is an introductory undergraduate course that teaches the fundamentals of microeconomics. This course introduces microeconomic concepts and analysis, supply and demand analysis, theories of the firm and individual behavior, competition and monopoly, and welfare economics. Students will also be introduced to the use of microeconomic applications to address problems in current economic policy throughout the semester. This course is a core subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
- Subjects:
- Economics
- Keywords:
- Microeconomics
- Resource Type:
- Courseware
-
Courseware
This course aims to give students the tools and training to recognize convex optimization problems that arise in scientific and engineering applications, presenting the basic theory, and concentrating on modeling aspects and results that are useful in applications. Topics include convex sets, convex functions, optimization problems, least-squares, linear and quadratic programs, semidefinite programming, optimality conditions, and duality theory. Applications to signal processing, control, machine learning, finance, digital and analog circuit design, computational geometry, statistics, and mechanical engineering are presented. Students complete hands-on exercises using high-level numerical software.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Mathematical optimization Convex functions
- Resource Type:
- Courseware
-
Courseware
This course provides a broad introduction to machine learning and statistical pattern recognition. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Pattern perception -- Statistical methods Machine learning
- Resource Type:
- Courseware