Search Constraints
Number of results to display per page
Results for:
Creativity and Innovation
Remove constraint Creativity and Innovation
Polyu oer sim
No
Remove constraint Polyu oer sim: No
« Previous |
1 - 10 of 25
|
Next »
Search Results
-
MOOC
Gone are the days when Problem Solving and Decision Making often happened within the four walls of a top boss’s cabin. In the beginning of this century - As we blinked our eyes, the world changed, cabins broke down to give way to open offices, traditional management hierarchy collapsed and saw a horizontal spread. With delegation and authority batons being passed to the executive and trainee levels, Problem Solving and Decision Making skills became a must have quality at all levels in an organization. In simple words it is – have it or leave it.
That’s less said - Just learning the skill of solving problems and taking good decisions isn’t enough. Today, the modern workplace demands the new age executives and managers to expand their potential of creative thinking and bring it to the table while solving problems and making decisions. There is one more news for you, Creativity, Problem Solving and Decision Making skills are no more confined to the management and leadership levels, students who aspire for their dream jobs to be a reality, also will have to bring these skills along with their candidature.
That is why, we decided to offer this practical and highly researched course with all these 3 skills clubbed into 1 course so that you may not have to search anywhere - anymore.
If at any point of your life, you ever felt the need to work upon your creative thinking ability or your problem solving skills or even your decision making capability, look no further, this course is just the right one for you.
- Course related:
- SD5131 Interdisciplinary Project
- Keywords:
- Problem solving Creative thinking Critical thinking
- Resource Type:
- MOOC
-
Others
CSI produces five primary software packages: SAP2000, CSiBridge, ETABS, SAFE, and PERFORM-3D.
Each of these programs offers unique capabilities and tools that are tailored to different types of structures and problems, allowing users to find just the right solution for their work. SAP2000 is intended for use on civil structures such as dams, communication towers, stadiums, industrial plants and buildings. CSiBridge offers powerful parametric design of concrete and steel bridges. ETABS has been developed specifically for multi-story commercial and residential building structures, such as office towers, apartments and hospitals. The SAFE System provides an efficient and powerful program for the analysis and design of concrete slabs and foundations, with or without post-tensioning. PERFORM-3D is a highly focused nonlinear tool offering powerful performance based design capabilities.
With its uniquely qualified staff of professional structural engineers, researchers, academicians, and its worldwide involvement in the structural engineering community, CSI has been at the forefront of structural software development for nearly four decades. With CSI products you can be confident that you have the finest structural engineering software available, backed by a company with an unmatched record of innovation, and an unrivaled commitment to meet the ever-evolving needs of the profession.
- Course related:
- CSE48405 Design Project For Structural and Fire Engineers
- Keywords:
- Structural design Architectural design Building -- Data processing Computer-aided design
- Resource Type:
- Others
-
MOOC
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications.
This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.
This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.
It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.) By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.
- Course related:
- AAE5103 Artificial Intelligence in Aviation Industry
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Artificial intelligence Machine learning
- Resource Type:
- MOOC
-
MOOC
When you immerse yourself in the context of the user, you can uncover pain points and find opportunities for improvement or innovation not always evident to your audience. In this course, part of the Design Thinking MicroMasters program, you will learn how to use simple research methodologies including active listening to understand your target audience and uncover their obvious or latent needs. Emphasis will be placed on observation and interviewing as key methods to gain empathy for the user's experience and viewpoint. Equipped with this understanding, you will be prepared to identify and define more accurately the business problem. You will also review case studies and discuss strategies to foster productive client-stakeholder relationships, including user personification, context understanding, and empathy idea mapping (ideas that resonate with your target audience).
- Subjects:
- Design Elements
- Keywords:
- Design -- Methodology Problem solving Industrial design
- Resource Type:
- MOOC
-
Courseware
The BIIG problem-solving method is unique in that it forces us to concentrate on decoding a real-world word problem completely into meaningful parts and aids us in finding and applying the right formula to easily arrive at the correct solution. As desired, it places less emphasis on the memorization of factual detail and more emphasis on the understanding of concepts. Evidently, this method is beneficial in many ways as it aids students in honing skills in critical thinking, logical approach and attention to detail. As a method for organizing information it helps students avoid errors and sets them on a path to succeed. As long as the numbers are “buddied up” with their units, “identified” by the appropriate variables, “isolated” within the context, and the answer is presented “gourmet”, or explained in terms of the original question, finding a solution to any complex problem will become seamless, understandable and enjoyable. This innovation in science education fosters a passion for learning and serves as a foundation for a new paradigm for problem-solving in any discipline of science worldwide.
- Subjects:
- Physics
- Keywords:
- Problem solving Physics
- Resource Type:
- Courseware
-
Courseware
Global Satellite Navigation Systems (GNSS), such as GPS, have revolutionized positioning and navigation. Currently, four such systems are operational or under development. They are the American GPS, the Russian Glonass, the European Galileo, and the Chinese Beidou-Compass. This course will address: (1) the technical principles of Global Navigation Satellite Systems (GNSS), (2) the methods to improve the accuracy of standard positioning services down to the millimeter accuracy level and the integrity of the systems, and (3) the various applications for positioning, navigation, geomatics, earth sciences, atmospheric research and space missions. The course will first address the space segment, user and control segment, signal structure, satellite and receiver clocks, timing, computation of satellite positions, broadcast and precise ephemeris. It will also cover propagation error sources such as atmospheric effects and multipath. The second part of the course covers autonomous positioning for car navigation, aviation, and location based services (LBS). This part includes the integrity of GNSS systems provided for instance by Space Based Augmentation Systems (e.g. WAAS, EGNOS) and Receiver Autonomous Integrity Monitoring (RAIM). It will also cover parameter estimation in dynamic systems: recursive least-squares estimation, Kalman filter (time update, measurement update), innovation, linearization and Extended Kalman filter. The third part of the course covers precise relative GPS positioning with two or more receivers, static and kinematic, for high-precision applications. Permanent GPS networks and the International GNSS Service (IGS) will be discussed as well. In the last part of the course there will be two tracks (students only need to do one): (1) geomatics track: RTK services, LBS, surveying and mapping, civil engineering applications (2) space track: space based GNSS for navigation, control and guidance of space missions, formation flying, attitude determination The final lecture will be on (scientific) applications of GNSS.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Global Positioning System Artificial satellites in navigation
- Resource Type:
- Courseware
-
Courseware
Around the world, major challenges of our time such as population growth and climate change are being addressed in cities. Here, citizens play an important role amidst governments, companies, NGOs and researchers in creating social, technological and political innovations for achieving sustainability. Citizens can be co-creators of sustainable cities when they engage in city politics or in the design of the urban environment and its technologies and infrastructure. In addition, citizens influence and are influenced by the technologies and systems that they use every day. Sustainability is thus a result of the interplay between technology, policy and people’s daily lives. Understanding this interplay is essential for creating sustainable cities. In this MOOC, we zoom in on Amsterdam, Beijing, Ho Chi Minh City, Nairobi, Kampala and Suzhou as living labs for exploring the dynamics of co-creation for sustainable cities worldwide. We will address topics such as participative democracy and legitimacy, ICTs and big data, infrastructure and technology, and SMART technologies in daily life. This global scope will be used to illustrate why specific forms of co-creation are preferred in specific urban contexts. Moreover, we will investigate and compare these cities on three themes that have a vast effect on city life: - Water and waste - Energy, air, food and mobility - Green spaces and food This MOOC will teach you about the dynamics of co-creation and the key principles of citizens interacting with service providing companies, technology and infrastructure developers, policy makers and researchers. You will gain an understanding of major types of co-creation and their interdependency with their socio-technical and political contexts. You will become equipped to indicate how you can use co-creation to develop innovative technologies, policy arrangements or social practices for a sustainable city in your own community. You will demonstrate this by developing an action plan, research proposal or project idea. Basic knowledge of sustainability in urban settings, urban environmental technology and urban management is assumed.
- Subjects:
- Environmental Engineering, Building Services Engineering, and Building and Real Estate
- Keywords:
- Sustainable development Sustainable development -- Citizen participation City planning
- Resource Type:
- Courseware
-
Courseware
Conducting innovative research is working on the edge of the known and the unknown. In creating new technology the result is never guaranteed. Society faces a tremendous challenge in order to develop in a more sustainable way. What role is there for technology in this process of change? How could we stimulate innovations in technological systems?
-
Video
Wind can be one of the most critical and complicated loads on civil structures. The case of the Tacoma Narrows bridge is a well-known cautionary tale that’s discussed in engineering and physics classrooms across the world. Both resonance from vortex shedding and aeroelastic flutter contributed to the failure. When you push the envelope, you have to be vigilant because things that didn’t matter before start to become important (e.g. wind loads on lighter structures). Unanticipated challenges are a cost of innovation and that’s something that we can all keep in mind.
- Subjects:
- Structural Engineering
- Keywords:
- Washington (State) -- Tacoma -- Tacoma Narrows Bridge (1940) Suspension bridges Wind-pressure
- Resource Type:
- Video
-
Video
People have been grappling with the question of artificial creativity -- alongside the question of artificial intelligence -- for over 170 years. For instance, could we program machines to create high quality original music? And if we do, is it the machine or the programmer that exhibits creativity? Gil Weinberg investigates this creative conundrum.
- Subjects:
- Electronic and Information Engineering
- Keywords:
- Robotics Artificial intelligence
- Resource Type:
- Video
- « Previous
- Next »
- 1
- 2
- 3