Search Constraints
Number of results to display per page
Results for:
Machine Learning
Remove constraint Machine Learning
Polyu oer sim
Yes
Remove constraint Polyu oer sim: Yes
1 - 2 of 2
Search Results
-
Video
Machine learning can deliver unprecedented performance. Its application domain has expanded into safety-critical cyber-physical systems such as UAVs and self-driver cars. However, the safety assurance of vehicular control has two conditions: 1) an analytical model of system behaviors such as provable stability, and 2) the software safety certification process (e.g., DO 178C) requires that the software be simple enough so that software safety can be validated by a combination of model checking and near exhaustive testing. Although ML software, as is, does not meet these two safety requirements, the real-time physics model supervised ML architecture holds the promise to 1) meet the two safety requirements and 2) enable ML software to safely improve control performance and safely learn from its experience in real-time. This talk will review the structure of the proposed architecture and some methods to embed physics into ML-enabled CPS control.
Event Date: 12/05/2022
Speaker: Prof. Lui Sha (University of Illinois Urbana-Champaign)
Hosted by: Graduate School
- Subjects:
- Computing, Data Science and Artificial Intelligence and Aeronautical and Aviation Engineering
- Keywords:
- Machine learning Computer software -- Reliability Drone aircraft Vehicles Remotely piloted
- Resource Type:
- Video
-
e-book
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
- Subjects:
- Land Surveying and Geo-Informatics
- Keywords:
- Smart cities Cities towns -- Data processing Cities towns -- Remote sensing Big data
- Resource Type:
- e-book