Search Constraints
Number of results to display per page
Results for:
Publisher
TU Delft OpenCourseWare
Remove constraint Publisher: TU Delft OpenCourseWare
Search Results
-
Courseware
This course explores the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure; profitable business models for electric mobility; and effective policies for governmental bodies, which will accelerate the uptake of electric mobility.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric vehicles
- Resource Type:
- Courseware
-
Courseware
This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.
-
Courseware
This course is for all of those struggling with data analysis. You will learn: - Overcome data analysis challenges in your work and research - Increase your productivity and make better business decisions - Enhance your data analysis skills using spreadsheets - Learn about advanced spreadsheet possibilities like array formulas and pivottables - Learn about Excel 2013 features like PowerPivot & PowerMap - Learn to organize and test your spreadsheets
-
Courseware
This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.
- Subjects:
- Electrical Engineering
- Keywords:
- Electronic circuits Power electronics
- Resource Type:
- Courseware
-
Courseware
This course is a basic course on Instrumentation and Measurement. Firstly, the detection limit in a typical instrument for measurement of an electrical quantity is determined for: offset, finite common-mode rejection, noise and interference. The dominant source of uncertainty is identified and the equivalent input voltage/current sources are calculated. Secondly, the measurement of a non-electrical quantity is discussed. In this case the detection limit should be expressed in terms of the non-electrical input parameter of interest. Issues discussed are: (cross-)sensitivities in frequently used transduction effects, non-electrical source loading and noise in the non-electrical signal domain. Coupled domain formal modeling is subsequently introduced to facilitate analytical multi-domain system analysis. Finally, the detection limit in typical applications in the mechanical, thermal, optical and magnetic signal domain are analysed, along with circuit and system techniques to maximize overall system detectivity. The tools that are introduced in the course, such as the formal modeling and the calculation of the detection limit, are applied in the mid-term project to a real-world measurement problem.
- Subjects:
- Electrical Engineering
- Keywords:
- Electronic instruments Electronic measurements
- Resource Type:
- Courseware
-
Courseware
This course covers the main tasks required from data analysts today, including importing, summarizing, interpreting, analyzing and visualizing data. It aims to equip you with the tools that will enable you to be an independent data analyst. Most techniques will be taught in Excel with add-ons and free tools available online. You will learn: - How to make data come to life with well-known types of visualizations such as line and bar graphs and new types of visualizations such as spark lines, contour plots and population pyramids. - How to create dashboards in Excel based on live data that can meet managerial and business needs. - How to connect data from different sources, such as the web and exports from your CRM, ERP, SAP or data warehouse. - Some hands-on data science and how to use actionable analysis tools. - Deep dive into known tools like PivotTables and introduce new ones like the analysis toolpak
-
Courseware
The technologies used to produce solar cells and photovoltaic modules are advancing to deliver highly efficient and flexible solar panels. In this course you will explore the main PV technologies in the current market. You will gain in-depth knowledge about crystalline silicon based solar cells (90% market share) as well as other up and coming technologies like CdTe, CIGS and Perovskites. This course provides answers to the questions: How are solar cells made from raw materials? Which technologies have the potential to be the major players for different applications in the future?
- Subjects:
- Electrical Engineering
- Keywords:
- Solar cells Photovoltaic power systems Photovoltaic power generation Silicon solar cells
- Resource Type:
- Courseware
-
Courseware
The purpose of this course is to learn how to specify the behavior of embedded systems and to experience the design of a provably correct system. In this course you will learn how to formally specify requirements and to prove (or disprove) them on the behaviour. With a practical assignment you will experience how to apply the techniques in practice.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Embedded computer systems
- Resource Type:
- Courseware
-
Courseware
The key factor in getting more efficient and cheaper solar energy panels is the advance in the development of photovoltaic cells. In this course you will learn how photovoltaic cells convert solar energy into useable electricity. You will also discover how to tackle potential loss mechanisms in solar cells. By understanding the semiconductor physics and optics involved, you will develop in-depth knowledge of how a photovoltaic cell works under different conditions. You will learn how to model all aspects of a working solar cell. For engineers and scientists working in the photovoltaic industry, this course is an absolute must to understand the opportunities for solar cell innovation.
- Subjects:
- Electrical Engineering
- Keywords:
- Solar energy Renewable energy sources Photovoltaic cells Photovoltaic power generation
- Resource Type:
- Courseware
-
Courseware
The course gives an overview of different types of electrical machines and drives. Different types of mechanica loads are discussed. Maxwell’s equations are applied to magnetic circuits including permanent magnets. DC machines, induction machines, synchronous machines, switched reluctance machines, brushless DC machines and single-phase machines are discussed with the power electronic converters used to drive them.
- Subjects:
- Electrical Engineering
- Keywords:
- Electric driving Electric machinery
- Resource Type:
- Courseware