Search Constraints
Number of results to display per page
Results for:
Tags sim
real numbers
Remove constraint Tags sim: real numbers
1 - 3 of 3
Search Results
-
e-book
This award-winning text carefully leads the student through the basic topics of Real Analysis. Topics include metric spaces, open and closed sets, convergent sequences, function limits and continuity, compact sets, sequences and series of functions, power series, differentiation and integration, Taylor's theorem, total variation, rectifiable arcs, and sufficient conditions of integrability. Well over 500 exercises (many with extensive hints) assist students through the material. For students who need a review of basic mathematical concepts before beginning "epsilon-delta"-style proofs, the text begins with material on set theory (sets, quantifiers, relations and mappings, countable sets), the real numbers (axioms, natural numbers, induction, consequences of the completeness axiom), and Euclidean and vector spaces; this material is condensed from the author's Basic Concepts of Mathematics, the complete version of which can be used as supplementary background material for the present text.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Mathematical analysis
- Resource Type:
- e-book
-
e-book
This book is meant to be rigorous, conservative, elementary and minimalist. At the same time it includes about the maximum what students can absorb in one semester. Approximately one-third of the material used to be covered in high school, but not any more.The present book is based on the courses given by the author at the Pennsylvania State University as an introduction to the foundations of geometry. The lectures were oriented to sophomore and senior university students. These students already had a calculus course. In particular,they are familiar with the real numbers and continuity. It makes it possible to cover the material faster and in a more rigorous way than it could be done in high school.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Geometry Plane
- Resource Type:
- e-book
-
e-book
We believe the entire book can be taught in twenty five 50-minute lectures to a sophomore audience that has been exposed to a one year calculus course. Vector calculus is useful, but not necessary preparation for this book, which attempts to be self-contained. Key concepts are presented multiple times, throughout the book, often first in a more intuitive setting, and then again in a definition, theorem, proof style later on. We do not aim for students to become agile mathematical proof writers, but we do expect them to be able to show and explain why key results hold. We also often use the review exercises to let students discover key results for themselves; before they are presented again in detail later in the book. The book has been written such that instructors can reorder the chapters (using the La- TeX source) in any (reasonable) order and still have a consistent text. We hammer the notions of abstract vectors and linear transformations hard and early, while at the same time giving students the basic matrix skills necessary to perform computations. Gaussian elimination is followed directly by an “exploration chapter” on the simplex algorithm to open students minds to problems beyond standard linear systems ones. Vectors in Rn and general vector spaces are presented back to back so that students are not stranded with the idea that vectors are just ordered lists of numbers. To this end, we also labor the notion of all functions from a set to the real numbers. In the same vein linear transformations and matrices are presented hand in hand. Once students see that a linear map is specified by its action on a limited set of inputs, they can already understand what a basis is. All the while students are studying linear systems and their solution sets, so after matrices determinants are introduced. This material can proceed rapidly since elementary matrices were already introduced with Gaussian elimination. Only then is a careful discussion of spans, linear independence and dimension given to ready students for a thorough treatment of eigenvectors and diagonalization. The dimension formula therefore appears quite late, since we prefer not to elevate rote computations of column and row spaces to a pedestal. The book ends with applications–least squares and singular values. These are a fun way to end any lecture course. It would also be quite easy to spend any extra time on systems of differential equations and simple Fourier transform problems.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Algebras Linear
- Resource Type:
- e-book