Search Constraints
Number of results to display per page
Results for:
Tags sim
renewable energy
Remove constraint Tags sim: renewable energy
1 - 8 of 8
Search Results
-
MOOC
Wind turbines and solar panels are likely to play a critical role in achieving a low-carbon power sector that helps address climate change and local pollution, resulting from fossil fuel power generation. Because wind and solar power output is weather-dependent, it is variable in nature and somewhat more uncertain than output from conventional fossil fuel generators. It is therefore important to consider how to manage high penetrations of solar and wind so as to maintain electricity system reliability. This introductory course, delivered by Ieading academics from Imperial College London, with technical input and contributions from the National Energy Renewable Lab (Golden, Colorado), will discuss what challenges variable output renewables pose to the achievability of a reliable, stable electricity system, how these challenges can be addressed and at what costs. Its overall objective is to demonstrate that there is already a range of established technologies, policies and operating procedures to achieve a flexible, stable, reliable electricity system with a high penetration of renewables such as wind and solar. The course uses a variety of country and context-specific examples to demonstrate the concepts. Policy makers, regulators, grid operators and investors in renewable electricity will benefit from a solid understanding of these considerations, thereby helping them drive forward the development of a fit-for-purpose clean power system in their own regional context.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Electric power production Renewable energy sources Electric power distribution
- Resource Type:
- MOOC
-
Courseware
Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency. Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques. The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.
- Subjects:
- Building Services Engineering, Chemistry, and Environmental Engineering
- Keywords:
- Storage batteries Renewable energy sources Hydrogen as fuel Energy storage Hydrogen -- Storage
- Resource Type:
- Courseware
-
Video
There are many benefits to using renewable energy resources, but what is it exactly? From solar to wind, find out more about alternative energy, the fastest-growing source of energy in the world—and how we can use it to combat climate change.
- Subjects:
- Environmental Engineering
- Keywords:
- Renewable energy sources
- Resource Type:
- Video
-
Video
Some people say that buying an electric car is a great way to fight climate change - but if they use electricity that is made by burning fossil fuels, are they really more environmentally friendly than gas powered cars?
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Electric vehicles -- Environmental aspects Automobiles -- Environmental aspects
- Resource Type:
- Video
-
Video
Biofuels can provide energy without the reliance on environmentally harmful fossils fuels -- but scientists are still searching for a plentiful source. Craig A. Kohn demonstrates how cellulose, the naturally abundant tough walls of plant cells, might be the solution.
- Subjects:
- Mechanical Engineering, Environmental Engineering, and Chemical and Bioprocess Technology
- Keywords:
- Renewable energy sources Biomass conversion Cellulose -- Biodegradation Biomass energy
- Resource Type:
- Video
-
Video
The Earth intercepts a lot of solar power: 173,000 terawatts. That’s 10,000 times more power than the planet’s population uses. So is it possible that one day the world could be completely reliant on solar energy? Richard Komp examines how solar panels convert solar energy to electrical energy.
- Subjects:
- Building Services Engineering and Environmental Engineering
- Keywords:
- Renewable energy sources Solar energy Photovoltaic power generation
- Resource Type:
- Video
-
Courseware
This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Energy consumption -- Environmental aspects Renewable energy sources Sustainable development
- Resource Type:
- Courseware
-
Courseware
Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.
- Subjects:
- Environmental Engineering and Building Services Engineering
- Keywords:
- Photovoltaic cells Photovoltaic power systems Photovoltaic power generation
- Resource Type:
- Courseware