Search Constraints
Number of results to display per page
1 - 5 of 5
Search Results
-
e-book
"Introductory Business Statistics provides students with an intuitive understanding of sampling distributions and their place in hypothesis testing. This texts aims to help students understand how statistics works, not just how to "get the right number"."--BCcampus website.
- Subjects:
- Mathematics and Statistics and Management
- Keywords:
- Textbooks Commercial statistics
- Resource Type:
- e-book
-
e-book
Introductory Business Statistics with Interactive Spreadsheets – 1st Canadian Edition is an adaptation of Thomas K. Tiemann's book, Introductory Business Statistics. This new edition still contains the basic ideas behind statistics, such as populations, samples, the difference between data and information, and sampling distributions as well as information on descriptive statistics and frequency distributions, normal and t-distributions, hypothesis testing, t-tests, f-tests, analysis of variance, non-parametric tests, and regression basics. New topics include the chi-square test and categorical variables, null and alternative hypotheses for the test of independence, simple linear regression model, least squares method, coefficient of determination, confidence interval for the average of the dependent variable, and prediction interval for a specific value of the dependent variable. This new edition also allows readers to learn the basic and most commonly applied statistical techniques in business in an interactive way — when using the web version — through interactive Excel spreadsheets. For each topic, a customized interactive template has been created within which selected values can be repeatedly changed to observe how the entire process, as well as the outcomes, are automatically adjusted. Also, in this adapted edition, the real-world examples throughout the text, and the information in general, have been revised to reflect Canadian content.
- Subjects:
- Management and Statistics and Research Methods
- Keywords:
- Business -- Decision making Textbooks Microsoft Excel (Computer file) Commercial statistics
- Resource Type:
- e-book
-
e-book
The book "Introductory Business Statistics" by Thomas K. Tiemann explores the basic ideas behind statistics, such as populations, samples, the difference between data and information, and most importantly sampling distributions. The author covers topics including descriptive statistics and frequency distributions, normal and t-distributions, hypothesis testing, t-tests, f-tests, analysis of variance, non-parametric tests, and regression basics. Using real-world examples throughout the text, the author hopes to help students understand how statistics works, not just how to "get the right number."
- Subjects:
- Mathematics and Statistics and Management
- Keywords:
- Textbooks Commercial statistics Industrial management -- Statistical methods
- Resource Type:
- e-book
-
e-book
The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.
- Course related:
- COMP4432 Machine Learning
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning
- Resource Type:
- e-book
-
e-book
Machine learning techniques have the potential of alleviating the complexity of knowledge acquisition. This book presents today’s state and development tendencies of machine learning. It is a multi-author book. Taking into account the large amount of knowledge about machine learning and practice presented in the book, it is divided into three major parts: Introduction, Machine Learning Theory and Applications. Part I focuses on the introduction to machine learning. The author also attempts to promote a new design of thinking machines and development philosophy. Considering the growing complexity and serious difficulties of information processing in machine learning, in Part II of the book, the theoretical foundations of machine learning are considered, and they mainly include self-organizing maps (SOMs), clustering, artificial neural networks, nonlinear control, fuzzy system and knowledge-based system (KBS). Part III contains selected applications of various machine learning approaches, from flight delays, network intrusion, immune system, ship design to CT and RNA target prediction. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners.
- Course related:
- COMP4432 Machine Learning
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning
- Resource Type:
- e-book