Search Constraints
Number of results to display per page
1 - 3 of 3
Search Results
-
e-book
A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts: Introduction to Unix/Linux: The command-line is the “natural environment” of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful “pipe” operator for file and data manipulation. Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs. Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2.
- Subjects:
- Biology
- Keywords:
- Computational biology Textbooks
- Resource Type:
- e-book
-
e-book
This is a new approach to an introductory statistical inference textbook, motivated by probability theory as logic. It is targeted to the typical Statistics 101 college student, and covers the topics typically covered in the first semester of such a course. It is freely available under the Creative Commons License, and includes a software library in Python for making some of the calculations and visualizations easier.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Textbooks Mathematical statistics
- Resource Type:
- e-book
-
Courseware
How do populations grow? How do viruses spread? What is the trajectory of a glider? Many real-life problems can be described and solved by mathematical models. In this course, you will form a team with another student and work in a project to solve a real-life problem. You will learn to analyze your chosen problem, formulate it as a mathematical model (containing ordinary differential equations), solve the equations in the model, and validate your results. You will learn how to implement Euler’s method in a Python program. If needed, you can refine or improve your model, based on your first results. Finally, you will learn how to report your findings in a scientific way. This course is mainly aimed at Bachelor students from Mathematics, Engineering and Science disciplines. However it will suit anyone who would like to learn how mathematical modeling can solve real-world problems.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Mathematical models
- Resource Type:
- Courseware